2009-03-31

Today will be a short lecture, because Bengt wants to go to London. There is some conference in string theory.

8. World sheet currents

§ 8.1: Electric charge conservation

Consider Maxwell's equations:

$$\partial_{\nu}F^{\mu\nu} = \frac{1}{c}j^{\mu}$$

Then, I hit this with ∂_{μ} :

$$\partial_{\mu}\partial_{\nu}F^{\mu\nu} = \frac{1}{c}\,\partial_{\mu}\,j^{\mu}$$

The left hand side is identically zero, since the indices on the derivatives commute, and we have $F^{\mu\nu} = -F^{\mu\nu}$.

$$\Rightarrow \partial_{\mu} j^{\mu} = 0$$

So, we say that the current j^{μ} is conserved — although it is really the corresponding charge that is conserved. We define the charge as the space integral of the zero-component of the current:

$$Q := \frac{1}{c} \int_V \mathrm{d}^3 x \, j^0$$

 $j^0 \equiv c \ \rho$, where ρ is the ordinary electric charge density. Q, as defined above, is the charge enclosed in the volume V.

$$\dot{Q} = \frac{\mathrm{d}}{\mathrm{d}t}Q = \frac{1}{c}\int_{V} \mathrm{d}^{3}x \,\partial_{0}j^{0} = -\frac{1}{c}\int_{V} \mathrm{d}^{3}x \,\nabla \cdot \boldsymbol{j} = -\frac{1}{c}\int_{\partial V} \mathrm{d}\boldsymbol{\sigma} \cdot \boldsymbol{j}$$

Two situations:

1) Evaluate this at infinity, assuming that all matter distributions are contained in a finite volume: $\dot{Q} = 0$, because then j = 0.

2) Consider a surface at finite distance:

$$\dot{Q} + \frac{1}{c} \int_{\partial V} \mathrm{d}\boldsymbol{\sigma} \cdot \boldsymbol{j} = 0$$

How do we get currents that behave (are conserved) like this?

§ 8.2: Lagrangian symmetries and Noether's theorem

Consider particle mechanics:

$$S = \int \,\mathrm{d}t \, L(q, \dot{q}; t)$$

where the t dependence of L comes from external "forces". Take the variation

$$\left\{ \begin{array}{l} q \to q + \delta q \\ \dot{q} \to \dot{q} + \frac{\mathrm{d}}{\mathrm{d}t} \delta q \end{array} \right.$$

of the action S:

$$\delta S = \int dt \left(\frac{\partial L}{\partial q} \,\delta q + \frac{\partial L}{\partial \dot{q}} \,\delta \dot{q} \right) = \int dt \left(\frac{\partial L}{\partial q} - \partial_t \left(\frac{\partial L}{\partial \dot{q}} \right) \right) \delta q + \left[\frac{\partial L}{\partial \dot{q}} \,\delta q \right]_{t_1}^{t_2}$$

Now we have two options to use this result:

1. If δq is any variations (vanishing at t_1 and t_2)

$$\Rightarrow \begin{cases} \text{Lagrange equations of motion (bulk term)} \\ \text{Boundary terms} = 0, \delta q |_{t_1}^{t_2} \equiv 0. \end{cases}$$

2. Pick special δq that correspond to symmetries (these will not vanish at t_1 and t_2 ; often they are constant).

If $\delta_{\varepsilon}q$ is a symmetry $\delta_{\varepsilon}S = 0$. \Rightarrow When the Lagrange equations are satisfied (sometimes we call this "being on-shell") then $\delta_{\varepsilon}S = 0 \Rightarrow$

$$\frac{\partial L}{\partial \dot{q}} \delta_{\varepsilon} q$$
 is t independent.

So define $\delta_{\varepsilon}q \equiv \varepsilon \Delta q$, $\varepsilon \equiv \text{constant}$ and

$$\varepsilon\,Q\!\equiv\!\frac{\partial L}{\partial \dot{q}}(\varepsilon\,\Delta q)$$

Then $\dot{Q} = 0$, where $Q \equiv \frac{\partial L}{\partial \dot{q}} \Delta q$. Example: If $L = \frac{1}{2} m \dot{x}^2$ and

$$\delta_{\varepsilon} x = \varepsilon \Rightarrow \delta_{\varepsilon} \dot{x} = 0 \Rightarrow Q = \frac{\partial L}{\partial \dot{x}} = m \, \dot{x} = p$$

So space translation invariance \Rightarrow momentum conservation!

Field theory

Example: Charged scalar field

$$\mathcal{L} = -\partial_{\mu}\bar{\phi}\partial^{\mu}\phi + m^{2}|\phi|^{2} - V(|\phi|)$$

Symmetry: $\phi \rightarrow e^{i\alpha}\phi$ for a constant α . This will generate a current.

Notation:

Index α : ξ^{α} are coordinates on the worldsheet in string theory or in space time in field theory. Index a, as in ϕ^a , labels the field components. a = target space index in string theory. Index i, as in ε^i , labels the symmetries.

$$\delta_{\varepsilon}S = 0 = \int \,\mathrm{d}^{d}\xi \bigg(\frac{\partial\mathcal{L}}{\partial\phi^{a}} - \partial_{\alpha}\bigg(\frac{\partial\mathcal{L}}{\partial(\partial_{\alpha}\phi^{a})}\bigg)\bigg)\delta_{\varepsilon}\phi^{a} + \int \,\mathrm{d}^{d}\xi \,\partial_{\alpha}\bigg(\frac{\partial\mathcal{L}}{\partial(\partial_{\alpha}\phi^{a})}h_{i}^{a}(\phi)\bigg)$$

where we have defined $\delta_{\varepsilon}\phi^{a} = \varepsilon^{i}h_{i}^{a}(\phi)$

§ 8.3: Current on the string world sheet

$$S = -\frac{T_0}{c} \int \underbrace{\mathrm{d}\tau}_{\mathrm{d}^2\xi} \sqrt{\left(\dot{x} \cdot x'\right)^2 - \dot{x}^2 (x')^2}$$

There is an obvious symmetry, namely $\delta_{\varepsilon} x^{\mu} = \varepsilon^{\mu} = \text{constant}$. The corresponding currents are

$$P^{\alpha}{}_{\mu} \equiv \frac{\partial \mathcal{L}}{\partial (\partial_{\alpha} x^{\mu})}$$

The conservation equation says

$$\partial_{\alpha}P^{\alpha}{}_{\mu}=0.$$

But this is just the field equation. This was the equation of motion that we derived before. Also the "charge" p_{μ} is

$$p_{\mu} = \int_0^{\sigma_1} \mathrm{d}\sigma P^{\tau}{}_{\mu}$$

satisfies $\dot{p}_{\mu}\!=\!0$ if we have Neumann boundary conditions.

§ 8.4: The complete momentum current

$$p_{\mu} \!\equiv\! \int_{0}^{\sigma_{1}} \mathrm{d}\sigma P^{\tau}{}_{\mu}$$

is computed for a fixed τ , but this is not necessary:

$$p_{\mu} \equiv \int_{\gamma} \left(P^{\tau}{}_{\mu} \,\mathrm{d}\sigma - P^{\sigma}{}_{\mu} \,\mathrm{d}\tau \right)$$

where γ is any non-trivial path across the open string.

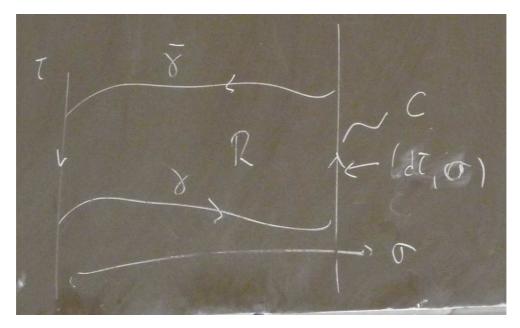


Figure 1.

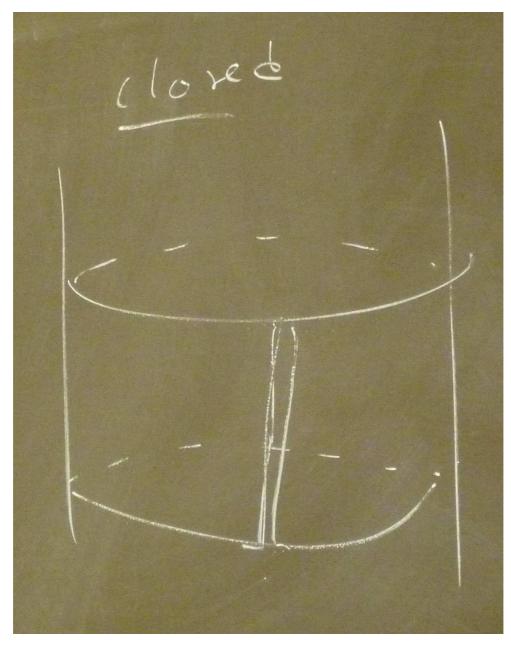


Figure 2.

First

$$\oint_{C=\partial R} \left(P^{\tau}{}_{\mu} \,\mathrm{d}\sigma - P^{\sigma}{}_{\mu} \,\mathrm{d}\tau \right) = \int_{R} \left(\partial_{\tau} P^{\tau}{}_{\mu} + \partial_{\sigma} P^{\sigma}{}_{\mu} \right) \mathrm{d}\tau \,\mathrm{d}\sigma$$

and second note that the edges contribute nothing for Neumann boundary conditions.

$$\int_{\gamma} = \int_{\bar{\gamma}}$$

§ 8.6: α' : The Regge slope parameter.

Read the rest yourself.