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6. Relativistic strings

Recall: The relativistic point particle

S =−m c

∫

P

ds +
q

c

∫

P

A− 1

4 c

∫

dDx Fµν F µν

where P is the world line xµ(τ ) and A = Aµ(x(τ)) dxµ = Aµ(x(τ ))
dxµ

dτ
dτ . Without the last term

the particle moves in a fixed background field.

If you vary with respect to xµ(τ ) you get the equations of motion for the particle. If you vary
Aµ(x) — no τ — you get Maxwell’s equations with source terms. (δ-functions for point charges,
since the source term is the density.)

The first term we want to understand in the string context is the first one, − m c
∫

P
ds. We

will get to the others later.

§ 6.1: Spatial soap films

Figure 1. We have a parameter space with ξi and a target space with coordinates xm. A square on the

parameter space maps to a square on the soap film that has to match the coordinate lines. The map is

xm(ξ1, ξ2). We want to compute the area element dA.







dv1≡ ∂x

∂ξ1
dξ1

dv2≡ ∂x

∂ξ2
dξ2

dA= |dv1| · |dv2| · sin θ = |dv1| · |dv2| · 1− cos2 θ
√

=
(

|dv1|2 + |dv2|2− |dv1 · dv2|2
)1/2

Introduce the notation: ξi =
(

ξ1, ξ2
)

:

gij4 ∂xµ

∂ξi

∂xn

∂ξj
δmn
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Then dA = det (gij)
√

dξ1 dξ2. gij here is called the “induced metric” or the “pull-back”. gij is

the induced metric from the target space (with metric δmn) via the embedding functions xm(ξ).

So the action here is

S =

∫

dA=

∫

det (gij)
√

d2ξ

This is the invariant measure (or volume) from general relativity. Let me quickly prove this to
you.

Invariance under general coordinate transformations on the surface: ξi→ ξ̃
i = ξ̃

i(ξ). Now I want
to show that the integral does not depend on the choice of coordinates — there is no physics in
the choice of coordinates.

⇒ ∂xm

∂ξi
=

∂xm

∂ξ̃
j

∂ξ̃
j

∂ξi
⇒ gij =

∂ξ̃ k

∂ξi

∂ξ̃ l

∂ξj

(

∂xm

∂ξ̃ k

∂xn

∂ξ̃ l
δmn

)�
≡ g̃kl

Note the indices: i, j = 1, 2 and m, n,� = 1,� , d. So

gij =
∂ξ̃ k

∂ξi

∂ξ̃ l

∂ξj
g̃kl

So, now we take the determinant of this:

det(g)=

∣

∣

∣

∣

∣

det

(

∂ξ̃

∂ξ

)∣

∣

∣

∣

∣

2

det(g̃)

⇒ det(g)
√

=

∣

∣

∣

∣

∣

det

(

∂ξ̃

∂ξ

)∣

∣

∣

∣

∣

det(g̃)
√

Use then the fact that:

dξ1 dξ2 =

∣

∣

∣

∣

det

(

∂ξi

∂ξ̃
j

)∣

∣

∣

∣

d ξ̃
1 d ξ̃
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(This is best done using wedge products, an anti-symmetric product. dxµ1 ∧ � ∧ dxµD =
εµ1� µD dDx.

dξ1∧ dξ2 =

(

∂ξ1

∂ξ̃
1 d ξ̃

1 +
∂ξ1

∂ξ̃
2 dξ2

)

∧
(

∂ξ2

∂ξ̃
1 d ξ̃

1 +
∂ξ2

∂ξ̃
2 d ξ̃

2

)

=

= det

(

∂ξ

dξ̃

)

d ξ̃
1∧ d ξ̃

2

We have |d ξ̃
1∧d ξ̃

2| ≡ d2ξ. QED)

But then

d2ξ det(g)
√

=d2ξ̃ det(g̃)
√

(Use
∂ξ̃

i

∂ξj

∂ξj

∂ξ̃
= δi

k )

det

(

∂ξ̃

∂ξ

)

det

(

∂ξ

∂ξ̃

)

= 1
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§ 6.3: Area functional for space-time surfaces. (Space surfaces are just strings: string
theory.)

I need to introduce some words. We have a map Xµ(τ , σ). τ and σ are now the coordinates on
the world sheet. This X is called the string coordinate.

Xµ(τ , σ): Σ2→MD

Σ2 is two-dimensional. MD is the target space time. It can be Minkowski, de Sitter, anti-de

Sitter, Minkowski with black holes, or whatever! MD is described with lower case (x0, x1,� , xd).

Figure 2. The string traces out a surface when it moves in space-time.
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We require
∂x0

∂τ
> 0.

A =

∫

dτ dσ −det(γαβ)
√

where γαβ is given by, with ξα =(τ , σ):

γαβ =
∂xµ

∂ξα

∂xν

∂ξβ
ηµν

The minus sign of −det(γαβ)
√

is because the determinant is negative in relativity.

Note that any small but finite section of the string has non-zero mass (T0 ds) which means that
it moves with velocity v < c ! The end points are special, and if there is a kink, that special
point could also move with the speed of light.

§ 6.4: The Nambu–Goto action

We use units







[τ ] = [t] = T

[σ] = [xµ] =L

[A] =L2

⇒S =− T0

c

∫

τi

τf

dτ

∫

0

σ1

dσ − det(γαβ)
√

Then using

ẋµ =
∂xµ

∂τ
, x′µ =

∂xµ

∂σ

⇒ S =− T0

c

∫

dτ dσ (ẋ ·x′)
2− ẋ2 (x′)

2
√

γαβ =

(

ẋµ ẋµ ẋµ xµ
′

ẋµ xµ
′ x′µ xµ

′

)

§ 6.5: Equations of motion

S =

∫

dτ dσL(ẋ , x′)

Vary with respect to xµ:

δxµ ⇒ δS =

∫

dτ dσ

(

∂L
∂ẋµ δẋµ +

∂L
∂x′µ

δx′µ

)

=

=−
∫

dτ dσ

(

∂τ

(

∂L
∂ẋµ

)

+ ∂σ
∂L

∂x′µ

)

δxµ +

∫

dτ dσ









∂τ

(

∂L
∂ẋµ δxµ

)�
=0; δxµ|τi

τf =0

+ ∂σ

(

∂L
∂x′µ

δxµ

)
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δS = 0: Bulk term:

∂τ P τ
µ + ∂σ P σ

µ = 0, whereP τ
µ =

∂L
∂ẋµ and P σ

µ =
∂L

∂x′µ
.

Boundary term: At σ = 0 and σ = σ1 we have P σ
µ · δxµ = 0. How to satisfy this condition? We

have to look at each end and each coordinate xµ separately:

1. Space: xm. Then we can have either δxm = 0, and that’s of course Dirichlet. Or we can

have P σ
m = 0. This is not Neumann. Free end condition. (It becomes Neumann after

gauge fixing!)

2. Time: x0. Then we can only have P σ
0 = 0: Dirichlet is impossible, because δx0 � 0. You

can’t fix time.

Note: The P σ
µ are very complicated → need to be simplified!

D-branes

Example: Recall the picture

Figure 3.

Boundary conditions: We have Dirichlet boundary conditions at both ends of x1 and x2 but
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Neumann (free end) at both ends of x3. We call this object a D1-brane. This object has a size.

Figure 4.

D-branes are not point-like, they have size coming from a horizon or something like that.

Another example:

Figure 5. The endpoint of the string is free to move on the D2-brane.

σ = 0 σ1

x Neumann Neumann
y Dirichlet Neumann
z Neumann Neumann

(fig.5) D2-brane D3-brane (space filling)
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Figure 6.

σ = 0 σ1

x Neumann Neumann
y Dirichlet Dirichlet
z Neumann Neumann

(cf. fig.6)
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Figure 7. Space-filing branes at both ends: open strings!
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D-branes

• Physical objects (soliton, black holes — black holes can be considered solitons in some
sense.)

• Can be infinite, and infinitely heavy.

• Can be finite sized.

• Infinitely extended D-branes may look like point particles in D = 4 spacetime after com-
pactification.

§ 6.6: The static gauge

Since the world sheet coordinates ξα = (τ , σ) are arbitrary we might pick a special set to get
simpler expressions for (P τ

µ , P σ
µ ). Consider a particular Lorentz frame and for any point Q on

the world surface we set τ (Q)= t(Q).

Figure 8.
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This is called a static gauge: x0(τ , σ)= c t(τ , σ)= c τ so t(τ , σ)= τ .

⇒xµ(τ , σ)= (c t, x(τ , σ))

⇒ ∂xµ

∂τ
=

(

c,
∂x

∂t
= v

)

,
∂xµ

∂σ
=

(

0,
∂x

∂σ
= x

′

)

There is a square root in the Nambu-Goto action. Check > 0
√

. Set v = 0.

(ẋ ·x′)
2− ẋ2 (x′)

2 = 0−
(

− c2
)

(x′)
2
> 0: OK.

§ 6.7: Tension and energy

Figure 9.

Space vector: σ = 0: (0,0) and σ = σ1: (a,0) where, in this context, 0= (x2, x3,� , xd).

10



Next let’s evaluate the action in the static gauge:











x0 = c t = c τ

x′(τ , σ)= f(σ)

x2 = x3 =� = xd = 0

⇒ ∂x′

∂σ
= f ′(σ)

⇒ S =− T0

c

∫

dτ�
=dt

dσ c2(f ′(σ))2
√

=−T0

∫

dt dσ f ′(σ
)2

√

=−T0

∫

ti

tf

dt

∫

0

σ1

dσ
d

dσ
f(σ)=

=−T0(tf − ti)

(

f(σ1)�
=a

− f(0)�
=a

)

=−T0 a (tf − ti)

=

∫

dt L =

∫

dt

(

T�
=0

−V

)

We get

V = T0 a and µ0c
2 =

V

a
= T0

Important check: Does the string we consider here satisfy the equations of motion. That’s abso-
lutely necessary, of course. Does it satisfy the proper boundary conditions? (We don’t have to
check here, for Dirichlet boundary conditions.) Check

∂τP
τ

µ + ∂σP
σ

µ =0: OK.

§ 6.8: Action in terms of transverse velocity.

Static gauge: t = τ .

xµ(τ , σ)= (c t, x(t, σ)
)

⇒
{

ẋµ = (c, ẋ)

x′µ =(0, x′)

ẋ2 =− c2 + ẋ
2, (x′)2 = (x′)

2

ẋ ·x′= ẋ ·x′

⇒
(

ẋ ·x′)2− ẋ2(x′)
2
= (ẋ ·x′)

2
+
(

c2− ẋ
2
)

(x′)
2

Now fix t and let ds denote the spacelike length element, ds≡ |dx(σ)|=
∣

∣

∣

∂x

∂σ

∣

∣

∣
|dσ |. For instance

dx

ds
· dx

ds
= 1.

⇒ (ẋ ·x′)
2− ẋ2(x′)

2 =

(

ds

dσ

)2
(

(

∂x

∂t

∂x

∂s

)2

+

(

c2−
(

∂x

∂t

)2
)

(

∂x

∂s

)2
)

=

=

(

ds

dσ

)2









c2−







(

∂x

∂t

)

−
(

∂x

∂t
· ∂x

∂s

)�
=v⊥







2









=

(

ds

dσ

)2
(

c2− v⊥
2
)

v⊥=
∂x

∂t
−
(

∂x

∂t
· ∂s

∂s

)

∂x

∂s

11



Figure 10.

S =−T0

∫

dt

∫

0

σ1

dσ
ds

dσ
1− v⊥

2

c2

√

This 1− v⊥
2 /c2

√

confirms the picture of the fundamental string!

Figure 11.
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§ 6.9: The endpoints of open strings

Boundary conditions: Neumann: P σ
µ = 0 at σ = 0 and σ = σ1. If we plug the static gauge expres-

sions
{

∂x

∂s
· ∂s

∂t
= 0

v = c

You should do this. This tells you that the ends move perpendicular to the string, with the velo-
city of light.
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