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6. Relativistic strings

Recall: The relativistic point particle
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where P is the world line z#(7) and A=A, (z(7)) da* = A, (x(7)) d7r. Without the last term

the particle moves in a fixed background field.

If you vary with respect to z#(7) you get the equations of motion for the particle. If you vary
A,(xz) — no 7 — you get Maxwell’s equations with source terms. (d-functions for point charges,
since the source term is the density.)

The first term we want to understand in the string context is the first one, —m ¢ [ p ds. We
will get to the others later.

§ 6.1: Spatial soap films

Figure 1. We have a parameter space with £ and a target space with coordinates ™. A square on the
parameter space maps to a square on the soap film that has to match the coordinate lines. The map is
2™ (€1, €2). We want to compute the area element dA.

dv, z%dgl

dv, = 55 d¢?

dA = |dvy] - |dws| - sin 6 = |dvy | - [dvs| - VT — 00520 = (|dvy |2+ |dvs|? — |dv; - dvs|?) "/

Introduce the notation: £'= (&', £2):
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Then dA = /det (g;;) d¢' d€2. g¢;; here is called the “induced metric” or the “pull-back”™ g;; is
the induced metric from the target space (with metric d,,,) via the embedding functions 2™ ().

So the action here is
S:/ dA:/ \/det (g”) d2§

This is the invariant measure (or volume) from general relativity. Let me quickly prove this to
you.

Invariance under general coordinate transformations on the surface: £ — §~ = §~ ’(5) Now I want
to show that the integral does not depend on the choice of coordinates — there is no physics in
the choice of coordinates.
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So, now we take the determinant of this:

2

det(g) = det(§)

= 4/det(g) =

Use then the fact that:
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(This is best done using wedge products, an anti-symmetric product. dz** A --- A daHP =
ghrmp qDyg,
dgl/\d£2:(a£ aét % d£2) (65 aé +a§ dé )
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We have |dé' AdE?| =d2%¢. QED)
But then
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§ 6.3: Area functional for space-time surfaces. (Space surfaces are just strings: string
theory.)

I need to introduce some words. We have a map X*#(7,0). 7 and o are now the coordinates on
the world sheet. This X is called the string coordinate.

XHMr1,0): 32— Mp

Yo is two-dimensional. Mp is the target space time. It can be Minkowski, de Sitter, anti-de
Sitter, Minkowski with black holes, or whatever! Mp is described with lower case (20, 2%, ..., 29).

Figure 2. The string traces out a surface when it moves in space-time.



. ox®
We require ——>0.

A:/dea — det(vap)

where 7,4 is given by, with {*= (7, 0):
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The minus sign of /— det(vqg) is because the determinant is negative in relativity.

Note that any small but finite section of the string has non-zero mass (Tp ds) which means that
it moves with velocity v < ¢! The end points are special, and if there is a kink, that special
point could also move with the speed of light.

§ 6.4: The Nambu—Goto action

We use units

[r]=[=T
ol=[xM=L
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Then using
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§ 6.5: Equations of motion
S:/deoﬁ(z',z’)

Vary with respect to x*:
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60S = 0: Bulk term:

0, P7,,+0,P°,=0, whereP"'u:% and P"u:%.

Boundary term: At ¢ =0 and 0 = 01 we have P?, - d2# = 0. How to satisfy this condition? We
have to look at each end and each coordinate z* separately:

1. Space: ™. Then we can have either dz™ = 0, and that’s of course Dirichlet. Or we can
have P?,, = 0. This is not Neumann. Free end condition. (It becomes Neumann after
gauge fixing!)

2. Time: z°. Then we can only have P% = 0: Dirichlet is impossible, because dz° # 0. You
can’t fix time.

Note: The P?,, are very complicated — need to be simplified!

D-branes

Example: Recall the picture

Figure 3.

Boundary conditions: We have Dirichlet boundary conditions at both ends of z! and z2? but



Neumann (free end) at both ends of 3. We call this object a D1-brane. This object has a size.

Figure 4.

D-branes are not point-like, they have size coming from a horizon or something like that.

Another example:

Figure 5. The endpoint of the string is free to move on the D2-brane.
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Figure 7. Space-filing branes at both ends: open strings!



D-branes

e Physical objects (soliton, black holes — black holes can be considered solitons in some
sense.)

e Can be infinite, and infinitely heavy.
e Can be finite sized.

e Infinitely extended D-branes may look like point particles in D = 4 spacetime after com-
pactification.

§ 6.6: The static gauge

Since the world sheet coordinates £€* = (7, o) are arbitrary we might pick a special set to get
simpler expressions for (P, ,P?, ). Consider a particular Lorentz frame and for any point @) on
the world surface we set 7(Q) =1(Q).

Figure 8.



This is called a static gauge: 2°(7,0) =ct(r,0)=cT so t(r,0) =T.

=a(r,0)=(ct,z(1,0))
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There is a square root in the Nambu-Goto action. Check v/>0. Set v=0.
(#-2')’ =32 (a')’ =0~ (—c?)(z')*>0: OK.

§ 6.7: Tension and energy

Figure 9.

Space vector: o =0:(0,0) and o =o0;: (a,0) where, in this context, 0= (22, z3,..., 2.
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Next let’s evaluate the action in the static gauge:

2=ct=cT or’
P(r0)=10)  =So=f0)
P?=r3=...=z%=0

te o1
S:—% \d;da\/c2(f’(a))2:—To/dtda f’(U)QZ—TO/ti dtf/O da%f(a):

=
=dt
To<tftl><f<al>f<o>>Toamtl)
=a =a
:/dtL:/dt< T —V>
=0
We get
, v
V=Tpa and poc :E:TO

Important check: Does the string we consider here satisfy the equations of motion. That’s abso-
lutely necessary, of course. Does it satisfy the proper boundary conditions? (We don’t have to

check here, for Dirichlet boundary conditions.) Check

8,P7, +08,P%,=0: OK.

§ 6.8: Action in terms of transverse velocity.

Static gauge: t=".
ah(r,0)=(ct,z(t,0))

- {06

Now fix t and let ds denote the spacelike length element, ds=|dx(c)| = Z—:: |do|. For instance
de dz_,
ds ds

<:c'-:c'f—aé?(x')?:(j—jﬂ(%%)ﬁ _(%)Xgﬁ)):
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Figure 10.
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This v/1 —v% /c? confirms the picture of the fundamental string!

Figure 11.
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§ 6.9: The endpoints of open strings

Boundary conditions: Neumann: P?, =0 at 0 =0 and o =o;. If we plug the static gauge expres-

sions
ox Os
{g'_ 0

v=¢cC

You should do this. This tells you that the ends move perpendicular to the string, with the velo-
city of light.
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