
Homework 3
Quantum Mechanics

Christian von Schultz

25th September 2008

3.1 Two-dimensional harmonic oscillator

“Consider a particle in two-dimensional harmonic harmonic
potential, so the Hamiltonian is given by

H =
1

2
k(x2 + y2) +

1

2m
(p2

x + p2
y)

• Write this as two independent operators using creation and
annhilation [sic] operators in the two axes x and y.

• Explain in a sentence or two why how [sic] the Hilbert space
is in fact a tensor product

• Write down a formula for the energy spectrum.

Now express the angular momentum operator L corresponding
to angular momentum around the z-axis in terms of the creation
and annihilation operators ax and ay and their complex conjugate;
how would this angular momentum operator generalize to three
dimensions?

• show explicitly that L and H commute in this representation

• Compute explicitly the eigenvalues and eigenvectors in the
harmonic oscillator for the six lowest energy eigenstates.

• Using your knowledge of the ground state of the single har-
monic oscillator, write down 〈r|ψ〉 where |ψ〉 is the lowest
energy eigenstate with angular momentum 1 and |r〉 repre-
sents the eigenket of the position operator.

This problem can fairly simply be generalized to three dimensions
when you can find simultaneous eigenvalues of H, L2 and Lz but
is sufficiently messy that I won’t ask you to work it out.”
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Two independent operators. We can write H as H = Hx +Hy, where

Hx =
1

2
kx2 +

1

2m
p2

x; Hy =
1

2
ky2 +

1

2m
p2

y

We define ω as ω =
√
k/m, and replace k above with mω2. Then we define

the annihilation operators ax and ay as

ax =

√
mω

2h̄

(
x+

ipx

mω

)
; a†x =

√
mω

2h̄

(
x− ipx

mω

)
where a†x is called the creation operator. ay and a†y are defined analogously.

Now the operators take the form

Hx = h̄ω(a†xax − 1
2
), Hy = h̄ω(a†yay − 1

2
),

H = h̄ω(a†xax − 1
2
) + h̄ω(a†yay − 1

2
).

A tensor product. When the Hamiltonian can be divided into two parts,
H = Hx +H2 as above, we can solve the problems corresponding to H1 and
H2 separately. The solutions of H1 will be in a Hilbert space with kets |ψ1〉,
and the solutions of H2 will be in a Hilbert space with kets |ψ2〉. The set of
solutions |ψ〉 of the entire problem with Hamiltonian H will then be spanned
by |ψ1〉⊗ |ψ2〉, the tensor product between the two. That’s how it is. But we
were also asked why this is. This is seen the easiest if we study a state |ψ〉
that is a direct tensor product of eigenstates (one can of course have linear
combinations, too). But this way we see why it is reasonable:

H |ψ〉 = H1 (|ψ1〉 ⊗ |ψ2〉) +H2 (|ψ1〉 ⊗ |ψ2〉) =

= (H1 |ψ1〉)⊗ |ψ2〉+ |ψ1〉 ⊗ (H2 |ψ2〉) = E1 |ψ1〉 ⊗ |ψ2〉+ E2 |ψ1〉 ⊗ |ψ2〉 =

= (E1 + E2) |ψ〉
This is what we would expect on physical grounds, and the tensor product
fulfils our expectations.

A formula for the energy spectrum. Let |n〉⊗|m〉 = |n,m〉 be the state
where the x oscillator is in eigenstate |n〉x and the y oscillator in the state
|m〉y. With Hx |n〉x = En |n〉x where En = h̄ω(n + 1

2
) (and analogously for

y), we have
H |n,m〉 = En,m |n,m〉 = (En + Em) |n,m〉

and thus En,m = h̄ω(n+m+1) is the energy spectrum of the two-dimensional
harmonic oscillator.
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The angular momentum around the z axis is given by

L = (r × p)z = xpy − ypx.

(There is no ambiguity in the order, when taking the classical expression and
making operators of it. x commutes with py, and y commutes with px. In
three dimensions we would get an Lx, an Ly and an Lz as the components of
r × p.)

Now, we use

x =

√
h̄

2mω

(
ax + a†x

)
, px = i

√
h̄mω

2

(
−ax + a†x

)
and similarly for y and py. This gives us

xpy =
ih̄

2

(
ax + a†x

) (
−ay + a†y

)
=

ih̄

2

(
−axay + axa

†
y − a†xay + a†xa

†
y

)
ypx =

ih̄

2

(
−ayax + aya

†
x − a†yax + a†ya

†
x

)
The ax and the ay commute, so we get L = ih̄

(
axa

†
y − a†xay

)
.

Now we should show that L and H commute:

[L,H] = [L,Hx +Hy] = [L,Hx] + [L,Hy] =

= ih̄
(
a†y[ax, Hx]− ay[a

†
x, Hx]

)
+ ih̄

(
ax[a

†
y, Hy]− a†x[ay, Hy]

)
.

[ax, Hx] = [ax, h̄ω(a†xax + 1
2
)] = h̄ω[ax, a

†
x]ax + h̄ωa†x[ax, ax] = h̄ωax

[a†x, Hx] = h̄ω[a†x, a
†
x]ax + h̄ωa†x[a

†
x, ax] = −h̄ωa†x

=⇒ [L,H] = ih̄2ωa†yax + ih̄2ωaya
†
x − ih̄2ωaxa

†
y − ih̄2ωa†xay = 0

as desired.

The six lowest energy states. They are:

|n,m〉 ∈ {|0,0〉 , |1,0〉 , |0,1〉 , |1,1〉 , |1,2〉 , |2,1〉}

That’s the eigenvectors. The eigenvalues are h̄ω, 2h̄ω, 2h̄ω, 3h̄ω, 4h̄ω and 4h̄ω,
respectively, according to the above energy formula.
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The lowest energy eigenstate with angular momentum 1 is the state
|ψ〉 so that L |ψ〉 = h̄ · 1 |ψ〉. We see that L |0,0〉 = 0, so we take the next
higher energy states:

L |n,m〉 = ih̄
√
n
√
m+ 1 |n− 1,m+ 1〉 −

√
n+ 1

√
m |n+ 1,m− 1〉

L |1, 0〉 = ih̄ |0, 1〉

L |0, 1〉 = −ih̄ |1, 0〉

A linear combination of these will do:

L(α |1,0〉+ β |0,1〉) = ih̄(−β |1, 0〉+ α |0,1〉) = h̄(−iβ |1, 0〉+ iα |0,1〉)

This is an eigenstate if α = −iβ and β = iα. We can take α = 1/
√

2:

|ψ〉 =
1√
2
|1,0〉+

i√
2
|0,1〉

Next, we are asked to find 〈r|ψ〉, where |r〉 = |x〉 ⊗ |y〉.

〈r|ψ〉 =
1√
2
〈x|1〉x 〈y|0〉y +

i√
2
〈x|0〉x 〈y|1〉y

For a harmonic oscillator, we have in general

〈x|0〉 =

(
1

π1/4
√
x0

)
exp

[
−1

2

(
x

x0

)2
]

where x0 =
√
h̄/mω. We have

〈x|1〉 =
1√
2x0

(
x− x2

0

d

dx

)
〈x|0〉 =

√
2
x

x0

〈x|0〉

〈r|ψ〉 =
1√
2

√
2
x

x0

〈x|0〉x 〈y|0〉y +
i√
2

√
2
y

x0

〈x|0〉x 〈y|0〉y =

=

{
x

x2
0

√
π

+
iy

x2
0

√
π

}
exp

[
−1

2

(x2 + y2)

x2
0

]
So the answer is

〈r|ψ〉 =
mω(x+ iy)

h̄
√
π

exp

[
−mω(x2 + y2)

2h̄

]
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3.2 Sakurai 2.11

“Consider a particle subject to a one-dimensional simple harmonic
oscillator potential. Suppose at t = 0 the state vector is given by

exp

(
−ipa

h̄

)
|0〉 ,

where p is the momentum operator and a is some number with di-
mension of length. Using the Heisenberg picture, evaluate the ex-
pectation value 〈x〉 for t ≥ 0.” (Sakurai, problem 2.11, page 145.)

First, what do we expect? We recognise the exponential above to be
exactly the translation operator T of Sakurai’s equation (1.6.36). It produces
a spatial translation of the state |0〉 by a length a in the positive x direction.
What does that give us? Sakurai calls it a coherent state (section 2.3, page 97)
— a superposition of energy eigenstates that closely imitates the classical
oscillator; a wave packet that bounces back and forth without spreading in
shape.

The operator x(t) is given by Sakurai’s equation (2.3.45a):

x(t) = x(0) cosωt+
p(0)

mω
sinωt.

The state |ψ〉 we are studying can be written

|ψ〉 = exp

(
−ip(0)a

h̄

)
|0〉 ,

where |0〉 is understood to be the state ket of the system ground state at
time t = 0. (The base kets |n〉 would be moving in the Heisenberg picture,
but the state ket |ψ〉 remains stationary.)

I will also be using Sakurai’s equations (2.3.25a) and (2.3.25b) in order
to say

〈0|x(0)|0〉 = 〈0|p(0)|0〉 = 0

which can be easily proved by writing the operators in terms of creation and
annihilation operators; and Sakurai’s equation (2.2.23a):

[x, F (p)] = ih̄
∂F

∂p
.

I do hope it is permissible that I take equations from Sakurai without proving
them first; in any case, the proof of this latter equation is similar to the one
we did in last week’s homework.

5



〈x〉 = 〈ψ|x(t)|ψ〉 = 〈ψ|x(0) cosωt|ψ〉+ 〈ψ|p(0)

mω
sinωt|ψ〉 =

= 〈0| exp

(
+ip(0)a

h̄

)
x(0) exp

(
−ip(0)a

h̄

)
|0〉 cosωt+

+ 〈0| exp

(
+ip(0)a

h̄

)
p(0) exp

(
−ip(0)a

h̄

)
|0〉 sinωt

mω

Now, since p(0) commutes with a function of itself, we have

exp

(
+ip(0)a

h̄

)
p(0) exp

(
−ip(0)a

h̄

)
=

= exp

(
+ip(0)a

h̄

)
exp

(
−ip(0)a

h̄

)
p(0) = p(0).

If I may use e+ and e− to refer to the exponentials above, we have for x(0):

e+x(0)e− = e+e−x(0) + e+[x(0), e−] = x(0) + e+

(
ih̄

∂e−

∂p(0)

)
=

= x(0) + e+

(
ih̄

(
− ia

h̄

)
e−

)
= x(0) + a

which we of course already knew, having identified e− as the translation
operator T at the outset.

This leaves us with

〈x〉 = 〈0|x(0)|0〉 cosωt+ 〈0|0〉 a cosωt+ 〈0|p(0)|0〉 sinωt

mω
= a cosωt.

Thus, the answer is 〈x〉 = a cosωt, a solution that closely imitates the clas-
sical oscillator, just as we expected.

3.3 Sakurai 2.4

“Let x(t) be the coordinate operator for a free particle in one
dimension in the Heisenberg picture. Evaluate [x(t), x(0)].”

(Remark: Revision 2 of the homework still talks about the state |0〉. Since a free
particle does not have a ground state, I’m going to assume that |0〉 has been left
over from the old version, where problem 3.3 still talked about Sakurai 2.15. I will
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do, as has been stated clearly on the homepage and at a lecture, Sakurai 2.4, and
do it as it was written in Sakurai — without the |0〉.)

To this end, we will need the time evolution operator of Sakurai (2.2.9):

U(t) = exp

(
−iHt

h̄

)
where H is the Hamiltonian operator and t is the time. We will also need
the commutation relation of Sakurai (2.2.23a):

[x, F (p)] = ih̄
∂F

∂p

In the Heisenberg picture operators, such as x(t), evolve according to the
equation x(t) = U†(t)x(0)U(t). For the commutator we then have

[x(t), x(0)] = x(t)x(0)−x(0)x(t) = U†(t)x(0)U(t)x(0)−x(0)U†(t)x(0)U(t).

To simplify our notation a bit, let’s drop the arguments of these operators,
and let it be understood that U is to be evaluated at time t, and x at time 0.

[x(t), x(0)] = U†xUx−xU†xU = U†Ux2 +U†[x,U ]x−xU†Ux−xU†[x,U ].

We know, of course, that U†U = 1, so now we only need the commutator
[x,U ] and we will have the answer [x(t), x(0)] = U†[x,U ]x − xU†[x,U ]. In
order to do this we need U , and for that we need the Hamiltonian for the
free particle:

H =
p2

2m
,

where p is the momentum operator. (Which is a constant of the motion,
because it commutes with H.)

[x,U ] =

[
x, exp

(
−iHt

h̄

)]
=

[
x, exp

(
−ip2t

2mh̄

)]
=

= ih̄
∂

∂p
exp

(
−ip2t

2mh̄

)
=

p

m
tU

Do note that U , being a function of p, commutes with p. That gives us

[x(t), x(0)] = U†U
p

m
tx = xU†U

p

m
tx =

p

m
tx− x

p

m
t =

= [p, x(0)]
t

m
=
−ih̄t

m
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So the answer is [x(t), x(0)] = h̄t/mi, where t is the time and m the mass
of the free particle. It would perhaps be easier to show this by following the
procedure in the book, writing down equations (2.2.26), (2.2.27) and (2.2.29)
— or even quote the book’s equation (2.2.29) directly. But I thought that
would be too easy, that it was probably expected that we do a bit more than
just look up the right equation in the book, so I have presented an alternative
derivation of (2.2.29).

3.4 Galilean transformations

“Let the unitary operator G be given by G = eiv(mx−pt)/h̄ where v
is a constant and x and p are operators. Show that G generates
the galilean transformation x→ x− vt and compute the result of
transforming p with G.”

I will be assuming that G = G.
The transformation is given by x′ = G†xG. (We are, of course, using the

Heisenberg picture; otherwise we would have x→ x and a change of the state
kets, instead of x→ x− vt as stated in the problem text.) This means that
we can use the formula

eXY e−X = Y + [X, Y ] +
1

2!
[X, [X, Y ]] + · · ·

which holds for any operators X and Y . In our specific case we have

G†xG = exp

(
− iv

h̄
(mx− pt)

)
x exp

(
iv

h̄
(mx− pt)

)
=

= x+

[
− iv

h̄
(mx− pt), x

]
+

1

2!

[
− iv

h̄
(mx− pt),

[
− iv

h̄
(mx− pt), x

]]
+ · · ·

Since [x, x] = 0 and [p, x] = −ih̄, we have[
− iv

h̄
(mx− pt), x

]
=

ivt

h̄
[p, x] = vt

and since this is a scalar, it commutes with everything, and the series ter-
minates at G†xG = x + vt. It would seem that one of us has made a sign
error.

G†pG = p+

[
− iv

h̄
(mx− pt), p

]
+

1

2!

[
− iv

h̄
(mx− pt), [. . . , p]

]
+ · · ·
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[
− iv

h̄
(mx− pt), p

]
= − ivm

h̄
[x, p] = vm

This is a scalar, and so commutes with everything. G†pG = p+ vm.
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