2.1

“A beam of spin % atoms goes through a series of Stern-

Gerlach—type measurements as follows:
a. The first measurement accepts s, = h/2 atoms and rejects
s, = —h/2 atoms.

b. The second measurement accepts s,, = h/2 atoms and rejects
Sp = —h/2 atoms, where s, is the eigenvalue of the operator
S -n, with n making an angle (3 in the xzz-plane with respect
to the z-axis.

c. The third measurement accepts s, = —h/2 atoms and rejects
s, = h/2 atoms.
What is the intensity of the final s, = —h/2 beam when the

s, = h/2 beam surviving the first measurement is normalized to
unity? How must we orient the second measuring apparatus if
we are to maximize the intensity of the final s, = —h/2 beam?”
(Sakurai, problem 1.13.)

The state after the first measurement can here be regarded as the initial
state, since it is normalised. That means that we are starting out with |+).
The filtering process can be described as

[+) = al+n) +0|=n) = al+n) = c|+) +d|=) — d]-).
This filtering can be carried out using projection operators:

d]=) = (1=)(=1) (I+n) (+al) [+) = |2 (=]4+n) (+al+)

In the end we are after the final intensity |d|?:

2 2
[d* = [ {=l+a) | [ (+al+) | (1)
In order to compute this, we need the eigenstate |+,) of the operator
S -n:
sin 3
S~n:(Sw Sy SZ) 0 =S,sin3+ S, cosf =
cos 3
h , h )
= [l + 1y ] sin B+ 5 [ 19 (H = =l cos =

. h fcosB sinf
“ 2 \sinf —cosp
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We can quickly establish the eigenvalues £ /2. We can find the eigenvectors
with Gaussian elimination, but to do that we would really like to be able to
multiply and divide with abandon — we need to consider a few special cases
first, to keep the trigonometric functions away from the dangerous values 0
and 1. Specifically, we need to treat 5 € {0,7/2, 7} separately.

For $=0,S -n=2S5, and |[+,) = |+), |—n) = |—)-

For f=m/2, S -mn=2S5, and |£,) = \/Li (|4) £ -)).

For =mn,8 -n=-S5,and |[+,) = |-), |—n) = |+).

Now, for any other 3:

cosF—1 sin 3
Sn—l]_2( sin (3 —cosﬁ—l)N

in 3 in 3
~ 1 COsSﬂ—l ~ 1 Cossﬁ—l
sinf —cosf3—1 0 0

If we take |+,) = (il), this means that z; and x5 obey the equation
2

(1 —cosfB)xy =sin [ - xs.

Using the formulae for twice an angle, we can simplify things a bit:

2 sin? gxl = 2sin 5 cos §x2

= sin §$1 = cos 5932

Combine this with the normalisation condition |z;|? 4 |z2|? and we immedi-
ately see a worthy candidate:

COS

8
o) = cos |4 +sin g =) = (). 2)

This general expression also reproduces the special cases isolated at the
outset, so we may take (2) to be the desired equation for |+,). There is no
need to calculate the other eigenstate |—,). Going back to the expression (1)
for the final intensity, we see that we need the inner products:

(+|+n) = Cosg and  (—|+,) = sing
1

ﬁ 2 Z Sil’l2 6

So, if the incoming intensity was unity, the final intensity will be % sin? 3.

To maximise the final intensity, the second measuring apparatus must be set
at right angles with the first: § = 7/2 produces the maximal intensity i.

d|* = cos2
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2.2
# —*-octave—*-

nn = 60;

id = eye ( nn );

h = - ( shift( id, 1) + shift( id, -1 ) );
h(1,1) += 3;

[u,e] = schur(h,"a");

ev = diag( e );

shouldbezero =h - (u *x (e x u’ ) );

deltat = .5;

ut = u * diag( exp( i * deltat * ev ) )*x u’ ;

x = [0:nn-1];

psi = exp( -C (C x - nn/2)/(an/6) )."2));
psi = psi ./ sqrt( psi * psi’);

psi (exp( 321 * pi * x / nn ) .* psi ).’;

gset key off

for t = 1:120

axis([1 nn 0 .1]);

plot( abs(psi)."2 )

axis([1 nn O .1]);

psi = ut * psi;

eval (sprintf ("print (\"-dpng\", \"fil%.3d.png\")", t ));
end

system("convert fil??7?.png gr.gif");

Here comes every fifth frame in the time evolution:
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2.3
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“Two observables A; and As, which do not involve time expli-
citly, are known not to commute,

[A1, Ag] # 0,

yet we also know that A; and Ay both commute with the Hamil-
tonian:

[A1, H] =0, [As, H] = 0.

Prove that the energy eigenstates are, in general, degenerate. Are
there exceptions? As an example, you may think of the central-



force problem H = p?/2m + V(r), with Ay — L., Ay — L,.”
(Sakurai, problem 1.17.)

Since [A1, H] = 0, we can diagonalise them simultaneously. Let the ba-
sis that diagonalises A; in this way be denoted by {|a(”)}. Similarly, since
[Ay, H] = 0 we can diagonalise A; and H simultaneously; let that basis be
denoted by {|b®)}. Since [A;, Ay] # 0 we know that, in general, |a®) does
not equal any of the [b®). It will be some linear combination:

’a(i)> — ZCZ(J') |b(j)> )
J

For at least one ¢ we will have several nonzero cz(»j) — otherwise we could
simultaneously diagonalise A; and Aj, and then we would have [A;, A5] = 0.
Since |a®) is an eigenket of H, we have H |a®) = h{”|a®) where A is
the energy eigenvalue of the eigenstate |a(). Similarly, let hl()j ) be the energy
eigenvalue of the eigenstate |[b9)). Now, on the one hand we have

J J

and on the other hand we have
Ha®) = b |a) =3 hd 1p).

J

S DRI By = 37 PR 159y
J J

Since the [b)) are linearly independent, we can equate their coefficients.
Thus, provided that CEJ ) =% 0 we have hé’) = hz(;j ), But, as pointed out above,
there must be at least some ¢ for which cl(-J ) # 0 holds for several j, which

which means that

means that for this ¢ we have several hl(,j ) taking on the same value. In other
words: the energy eigenstates of H are degenerate.
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“Prove the operator identity

., OF
[pi, F(z)] = _lh&r-
where F'(z) is a function of the operator « in two ways: (1) direct-
ly from the commutation relations [z;, p;] = ihd;; and (2) by using
the real space basis and evaluating (z|[p;, F'(x)]|f).”




Using the commutation relations. Assume that the operator F'(x) can
be written in a Taylor expansion:

F(x) = Z aa,gﬁx?xgxg.
a8y

Without loss of generality, assume i = 1. (If it is not, we relabel the axes so
that it is.) We then compute

1, ()] = > tapylpr, 23)a3.
a,Byy

Noting that [a,b] = —[b,a], we can now call into effect the theorem of last
week’s homework, number 1.3:

[[,A],Q =0 = [Q™ A] = mQ" [, A] for operators 2, A.

In this problem, we take Q = 27 and A = py. [z1, p1] = ik, which commutes
with x1, so the requirements are fulfilled.

Thus
_ . o ., o0xy
[p1, 28] = axd Hpy, 1] = —ihaxd Hpy, 1] = —1ha L
I
0 OF
F :—'hE —a%alr) = —ih=—
[p1, F ()] 1 aﬁyaxlxl%mg 1 D7,

If we now undo the relabelling that resulted in ¢ = 1, we arrive at the
statement to be proved:
., OF
[pi, F(x)] = —ih—.

X

Using the real space basis. TIll take  to be the operator, and & to be
the coordinates of the state |&). I would have found it more intuitive to have
it the other way around. ..

In general, we have

(B ()]} = / day () (2 Ypa(a).

(@|[ps, F(2)]|f) = (@lp:F(@)| f) — (@|F(2)p:] f)

@lp (@) = [ da’ (G’ - @) (i) 5 F@) (@) =
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. /dmfa(a:’ s <6F(:B/) f) 4 F (m,)af(w’)) _

ox!,
., [(OF(x)
= —ih ( o

@)+ F(@)

of (')
o
This gives us the following expression for the left hand side:

(@l[pr, F(@))f) = —in 2

Now on to the right hand side:

@l (<ingy ) 1) = [ o't - @) (<n25 ) 11

OF (x) .
8[)3; s f(w)
We see that the expression for the left hand side above and this expression
for the right hand side agree. Thus

x

(®|F(x)pi| f) = —ihF ()

x'=x

8

l):

= —ih

OF

i, F(@)] = =i

2.5

“Let the state initial state [sic] of a one dimensional free par-
ticle be given by |¢(0)) where (x|¢(0)) is given by the Gaussian

ooy = (2 oo

where a is real and positive.
(a) Transform to momentum eigenstates and show that

1

160 = (5 ) o

2arh?
(b) Compute (z|1(t)) and show it is equal to
9a\ 1 e—ax/(1+(2ihat/m))
(_> V1 + (2ihat/m)

(c) Compute the probability density | (x|« (¢)) |* and show that
it is a gaussian [sic|] which spreads out in time.”

™



Transformation to momentum eigenstates proceeds as usual

www:/mmwmww

We know that

(z|p) = \/;T—h exp (%) ,

o) = = (2" [ resp (22 ) -0t -
(%) e (o) -
() (@) e (- (2) )

where the last step was taken using the familiar expression for Gaussian
integrals with an imaginary coefficient for the x factor. Cleaning this up, we

arrive at .
1 4 p?
o) = —= —=
Pl (0)) <27Th2a> P ( 4ah2>

To compute (z|1)(t)) we need the time evolution operator % :

SO

as desired.

U = exp(—iHt/h),

where H = p*/2m for a free particle. We then have

(el (0) = (el 010)) = [ dp (el 1p) (1(0)) =

.
ip“t
= [avesp (~5ar ) el ool -
1 1 i/d . ip?t +ipx p? )
= X — - — e
V2rh \2rh’a pexp 2mh h 4ah?

1 1 \1 / . L1 it e
= e - 5 I - -
V2rh \27h’a pExp 2 \2ah®>  mh b h p
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1
1 1\ o ‘. <x>2 NN
= . xp | — (= —
Vorh \ 2rhla ﬁ + anth P h 2ah?>  mh

Note that
1 it 1+ 2ihat/m

T
2ah?  mh 2ah’

This clears up the exponential nicely, and with some further thought we find

the coefficient matches up as well:

1

 (2a)\ 7 exp (—ax?/(1 + 2ihat/m))
@W@»—(W) 1+ 2ihat/m

As far as I can see, there is nothing in the Gaussian formula used for this
that tells us which branch of the complex square root we should use — I'm
not very happy with the derivations of this formula I have seen. But assuming
that it is correct, this is what we get.

The probability density |(z|(t))|* is relatively easy. If ¢ is a complex

number, |c[*> = |c?| = ¢*c. We will use the first of these equalities for the
square root, squaring it first, while we use the second for the exponential:
[ (z[e(t) |* =

112

exp (—ax?/(1 — 2ihat/m)) exp (—ax?/(1 4 2ihat/m))
(v mmafm) |

2 1 1
. [2a %P (—aaz ((I—Qihat/m) + (1+2ihat/m)>> B
T

\/1 + 4h*a2t2 /m?
—2azx
/ a “XP 1+4h2a2t2/m2>
\/1 + 4h*a2t? /m?
This is a Gaussian (the only x is a 2* with a negative coefficient, appearing
in the argument of the exponential function), and it is spreading out in time.

To see the latter, consider that the square of the standard deviation o is
proportional to the expression in the denominator,

o? oc 1 +4h%at? /m?,
and this increases with time.
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