
2.1

“A beam of spin 1
2

atoms goes through a series of Stern-
Gerlach–type measurements as follows:

a. The first measurement accepts sz = h̄/2 atoms and rejects
sz = −h̄/2 atoms.

b. The second measurement accepts sn = h̄/2 atoms and rejects
sn = −h̄/2 atoms, where sn is the eigenvalue of the operator
S ·n̂, with n̂ making an angle β in the xz-plane with respect
to the z-axis.

c. The third measurement accepts sz = −h̄/2 atoms and rejects
sz = h̄/2 atoms.

What is the intensity of the final sz = −h̄/2 beam when the
sz = h̄/2 beam surviving the first measurement is normalized to
unity? How must we orient the second measuring apparatus if
we are to maximize the intensity of the final sz = −h̄/2 beam?”
(Sakurai, problem 1.13.)

The state after the first measurement can here be regarded as the initial
state, since it is normalised. That means that we are starting out with |+〉.
The filtering process can be described as

|+〉 = a |+n〉+ b |−n〉 7→ a |+n〉 = c |+〉+ d |−〉 7→ d |−〉 .

This filtering can be carried out using projection operators:

d |−〉 =
(
|−〉 〈−|

) (
|+n〉 〈+n|

)
|+〉 = |−〉 〈−|+n〉 〈+n|+〉

In the end we are after the final intensity |d|2:

|d|2 =
∣∣ 〈−|+n〉

∣∣2 ∣∣ 〈+n|+〉
∣∣2 (1)

In order to compute this, we need the eigenstate |+n〉 of the operator
S · n:

S · n =
(
Sx Sy Sz

)sin β
0

cos β

 = Sx sin β + Sz cos β =

=
h̄

2

[
|+〉 〈−| + |−〉 〈+|

]
sin β +

h̄

2

[
|+〉 〈+| − |−〉 〈−|

]
cos β

.
=

.
=
h̄

2

(
cos β sin β
sin β − cos β

)
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We can quickly establish the eigenvalues ±h̄/2. We can find the eigenvectors
with Gaussian elimination, but to do that we would really like to be able to
multiply and divide with abandon — we need to consider a few special cases
first, to keep the trigonometric functions away from the dangerous values 0
and 1. Specifically, we need to treat β ∈ {0, π/2, π} separately.

For β = 0, S · n = Sz and |+n〉 = |+〉, |−n〉 = |−〉.
For β = π/2, S · n = Sx and |±n〉 = 1√

2
(|+〉 ± |−〉).

For β = π, S · n = −Sz and |+n〉 = |−〉, |−n〉 = |+〉.
Now, for any other β:

S · n− 1I
.
=
h̄

2

(
cos β − 1 sin β

sin β − cos β − 1

)
∼

∼
(

1 sin β
cos β−1

sin β − cos β − 1

)
∼
(

1 sin β
cos β−1

0 0

)
If we take |+n〉

.
=

(
x1

x2

)
, this means that x1 and x2 obey the equation

(1− cos β)x1 = sin β · x2.

Using the formulae for twice an angle, we can simplify things a bit:

2 sin2 β

2
x1 = 2 sin

β

2
cos

β

2
x2

=⇒ sin
β

2
x1 = cos

β

2
x2

Combine this with the normalisation condition |x1|2 + |x2|2 and we immedi-
ately see a worthy candidate:

|+n〉 = cos
β

2
|+〉+ sin

β

2
|−〉 .=

(
cos β

2

sin β
2

)
. (2)

This general expression also reproduces the special cases isolated at the
outset, so we may take (2) to be the desired equation for |+n〉. There is no
need to calculate the other eigenstate |−n〉. Going back to the expression (1)
for the final intensity, we see that we need the inner products:

〈+|+n〉 = cos
β

2
and 〈−|+n〉 = sin

β

2

|d|2 = cos2 β

2
sin2 β

2
=

1

4
sin2 β.

So, if the incoming intensity was unity, the final intensity will be 1
4
sin2 β.

To maximise the final intensity, the second measuring apparatus must be set
at right angles with the first: β = π/2 produces the maximal intensity 1

4
.
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2.2

# -*-octave-*-

nn = 60;

id = eye ( nn );

h = - ( shift( id, 1) + shift( id, -1 ) );

h(1,1) += 3;

[u,e] = schur(h,"a");

ev = diag( e );

shouldbezero = h - ( u * ( e * u’ ) );

deltat = .5;

ut = u * diag( exp( i * deltat * ev ) )* u’ ;

x = [0:nn-1];

psi = exp( -( (( x - nn/2)/(nn/6) ).^2));

psi = psi ./ sqrt( psi * psi’);

psi = ( exp( 32i * pi * x / nn ) .* psi ).’;

gset key off

for t = 1:120

axis([1 nn 0 .1]);

plot( abs(psi).^2 )

axis([1 nn 0 .1]);

psi = ut * psi;

eval(sprintf("print(\"-dpng\", \"fil%.3d.png\")", t ));

end

system("convert fil???.png gr.gif");

Here comes every fifth frame in the time evolution:
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2.3

“Two observables A1 and A2, which do not involve time expli-
citly, are known not to commute,

[A1, A2] 6= 0,

yet we also know that A1 and A2 both commute with the Hamil-
tonian:

[A1, H] = 0, [A2, H] = 0.

Prove that the energy eigenstates are, in general, degenerate. Are
there exceptions? As an example, you may think of the central-
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force problem H = p2/2m + V (r), with A1 → Lz, A2 → Lx.”
(Sakurai, problem 1.17.)

Since [A1, H] = 0, we can diagonalise them simultaneously. Let the ba-
sis that diagonalises A1 in this way be denoted by {|a(i)〉}. Similarly, since
[A2, H] = 0 we can diagonalise A2 and H simultaneously; let that basis be
denoted by {|b(i)〉}. Since [A1, A2] 6= 0 we know that, in general, |a(i)〉 does
not equal any of the |b(i)〉. It will be some linear combination:

|a(i)〉 =
∑

j

c
(j)
i |b(j)〉 .

For at least one i we will have several nonzero c
(j)
i — otherwise we could

simultaneously diagonalise A1 and A2, and then we would have [A1, A2] = 0.

Since |a(i)〉 is an eigenket of H, we have H |a(i)〉 = h
(i)
a |a(i)〉 where h

(i)
a is

the energy eigenvalue of the eigenstate |a(i)〉. Similarly, let h
(j)
b be the energy

eigenvalue of the eigenstate |b(j)〉. Now, on the one hand we have

H |a(i)〉 =
∑

j

c
(j)
i H |b(j)〉 =

∑
j

c
(j)
i h

(j)
b |b(j)〉 ,

and on the other hand we have

H |a(i)〉 = h(i)
a |a(i)〉 =

∑
j

c
(j)
i h(i)

a |b(j)〉 ,

which means that ∑
j

c
(j)
i h

(j)
b |b(j)〉 =

∑
j

c
(j)
i h(i)

a |b(j)〉 .

Since the |b(j)〉 are linearly independent, we can equate their coefficients.

Thus, provided that c
(j)
i 6= 0 we have h

(i)
a = h

(j)
b . But, as pointed out above,

there must be at least some i for which c
(j)
i 6= 0 holds for several j, which

means that for this i we have several h
(j)
b taking on the same value. In other

words: the energy eigenstates of H are degenerate.

2.4

“Prove the operator identity[
pi, F (x)

]
= −ih̄

∂F

∂xi

where F (x) is a function of the operator x in two ways: (1) direct-
ly from the commutation relations [xi, pj] = ih̄δij and (2) by using
the real space basis and evaluating 〈x̂|[pi, F (x)]|f〉.”

7



Using the commutation relations. Assume that the operator F (x) can
be written in a Taylor expansion:

F (x) =
∑
α,β,γ

aα,β,γx
α
1x

β
2x

γ
3 .

Without loss of generality, assume i = 1. (If it is not, we relabel the axes so
that it is.) We then compute

[p1, F (x)] =
∑
α,β,γ

aα,β,γ[p1, x
α
1 ]xβ

2x
γ
3 .

Noting that [a, b] = −[b, a], we can now call into effect the theorem of last
week’s homework, number 1.3:

[[Ω,Λ],Ω] = 0 =⇒ [Ωm,Λ] = mΩm−1[Ω,Λ] for operators Ω,Λ.

In this problem, we take Ω = x1 and Λ = p1. [x1, p1] = ih̄, which commutes
with x1, so the requirements are fulfilled.

Thus

[p1, x
α
1 ] = αxα−1

1 [p1, x1] = −ih̄αxα−1
1 [p1, x1] = −ih̄

∂xα
1

∂x1

[p1, F (x)] = −ih̄
∑
α,β,γ

∂

∂x1

xα
1x

β
2x

γ
3 = −ih̄

∂F

∂x1

If we now undo the relabelling that resulted in i = 1, we arrive at the
statement to be proved:

[pi, F (x)] = −ih̄
∂F

∂xi

.

Using the real space basis. I’ll take x to be the operator, and x̂ to be
the coordinates of the state |x̂〉. I would have found it more intuitive to have
it the other way around. . .

In general, we have

〈β|f(x)|α〉 =

∫
dx′ψ∗β(x′)f(x′)ψα(x′).

〈x̂|[pi, F (x)]|f〉 = 〈x̂|piF (x)|f〉 − 〈x̂|F (x)pi|f〉

〈x̂|piF (x)|f〉 =

∫
dx′ (δ(x′ − x̂))

∗
(−ih̄)

∂

∂x′i
F (x′)f(x′) =

8



= −ih̄

∫
dx′δ(x′ − x̂)

(
∂F (x′)

∂x′i
f(x′) + F (x′)

∂f(x′)

∂x′i

)
=

= −ih̄

(
∂F (x′)

∂x′i

∣∣∣∣
x′=x̂

f(x̂) + F (x̂)
∂f(x′)

∂x′i

∣∣∣∣
x′=x̂

)
〈x̂|F (x)pi|f〉 = −ih̄F (x̂)

∂f(x′)

∂x′i

∣∣∣∣
x′=x̂

This gives us the following expression for the left hand side:

〈x̂|[pi, F (x)]|f〉 = −ih̄
∂F (x′)

∂x′i

∣∣∣∣
x′=x̂

f(x̂)

Now on to the right hand side:

〈x̂|
(
−ih̄

∂F

∂xi

)
|f〉 =

∫
dx′ (δ(x′ − x̂))

∗
(
−ih̄

∂F (x′)

∂x′i

)
f(x′) =

= −ih̄
∂F (x′)

∂x′i

∣∣∣∣
x′=x̂

f(x̂)

We see that the expression for the left hand side above and this expression
for the right hand side agree. Thus

[pi, F (x)] = −ih̄
∂F

∂xi

.

2.5

“Let the state initial state [sic] of a one dimensional free par-
ticle be given by |ψ(0)〉 where 〈x|ψ(0)〉 is given by the Gaussian

〈x|ψ(0)〉 =

(
2a

π

) 1
4

e−ax2

where a is real and positive.
(a) Transform to momentum eigenstates and show that

〈p|ψ(0)〉 =

(
1

2aπh̄2

) 1
4

e−
p2

4h̄2a

(b) Compute 〈x|ψ(t)〉 and show it is equal to(
2a

π

) 1
4 e−ax2/(1+(2ih̄at/m))√

1 + (2ih̄at/m)

(c) Compute the probability density | 〈x|ψ(t)〉 |2 and show that
it is a gaussian [sic] which spreads out in time.”
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Transformation to momentum eigenstates proceeds as usual

〈p|ψ(0)〉 =

∫
dx 〈p|x〉 〈x|ψ(0)〉

We know that

〈x|p〉 =
1√
2πh̄

exp

(
ipx

h̄

)
,

so

〈p|ψ(0)〉 =
1√
2πh̄

(
2a

π

) 1
4
∫

dx exp

(
−ipx

h̄

)
exp(−ax2) =

=
1√
2πh̄

(
2a

π

) 1
4
∫

dx exp

(
− ipx

h̄
− ax2

)
=

=
1√
2πh̄

(
2a

π

) 1
4 (π

a

) 1
2
exp

(
−
(p
h̄

)2

/4a

)
where the last step was taken using the familiar expression for Gaussian
integrals with an imaginary coefficient for the x factor. Cleaning this up, we
arrive at

〈p|ψ(0)〉 =

(
1

2πh̄2a

) 1
4

exp

(
− p2

4ah̄2

)
as desired.

To compute 〈x|ψ(t)〉 we need the time evolution operator U :

U = exp(−iHt/h̄),

where H = p̂2/2m for a free particle. We then have

〈x|ψ(t)〉 = 〈x|U |ψ(0)〉 =

∫
dp 〈x|U |p〉 〈p|ψ(0)〉 =

=

∫
dp exp

(
− ip2t

2mh̄

)
〈x|p〉 〈p|ψ(0)〉 =

=
1√
2πh̄

(
1

2πh̄2a

) 1
4
∫

dp exp

(
− ip2t

2mh̄
+

ipx

h̄
− p2

4ah̄2

)
=

=
1√
2πh̄

(
1

2πh̄2a

) 1
4
∫

dp exp

(
−1

2

(
1

2ah̄2 +
it

mh̄

)
p2 +

ix

h̄
p

)
=
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=
1√
2πh̄

(
1

2πh̄2a

) 1
4

(
2π

1
2ah̄2 + it

mh̄

) 1
2

exp

(
−
(x
h̄

)2
/

2

(
1

2ah̄2 +
it

mh̄

))
Note that

1

2ah̄2 +
it

mh̄
=

1 + 2ih̄at/m

2ah̄2 .

This clears up the exponential nicely, and with some further thought we find
the coefficient matches up as well:

〈x|ψ(t)〉 =

(
2a

π

) 1
4 exp (−ax2/(1 + 2ih̄at/m))√

1 + 2ih̄at/m

As far as I can see, there is nothing in the Gaussian formula used for this
that tells us which branch of the complex square root we should use — I’m
not very happy with the derivations of this formula I have seen. But assuming
that it is correct, this is what we get.

The probability density | 〈x|ψ(t)〉 |2 is relatively easy. If c is a complex
number, |c|2 = |c2| = c∗c. We will use the first of these equalities for the
square root, squaring it first, while we use the second for the exponential:

| 〈x|ψ(t)〉 |2 =

=

∣∣∣∣∣
(

2a

π

) 1
4

∣∣∣∣∣
2

exp (−ax2/(1− 2ih̄at/m)) exp (−ax2/(1 + 2ih̄at/m))∣∣∣∣(√1 + 2ih̄at/m
)2
∣∣∣∣ =

=

√
2a

π

exp
(
−ax2

(
1

(1−2ih̄at/m)
+ 1

(1+2ih̄at/m)

))
√

1 + 4h̄2a2t2/m2

=

=

√
2a

π

exp
(

−2ax2

1+4h̄2a2t2/m2

)
√

1 + 4h̄2a2t2/m2

This is a Gaussian (the only x is a x2 with a negative coefficient, appearing
in the argument of the exponential function), and it is spreading out in time.
To see the latter, consider that the square of the standard deviation σ is
proportional to the expression in the denominator,

σ2 ∝ 1 + 4h̄2a2t2/m2,

and this increases with time.
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