
2009–03–04 Lecturer: Per Salomonson

Last time: Electromagnetism and strong interactions.
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Flavours f = u, d, s, c, t, b. Charged leptons l = e, µ, τ . Dirac spinors: ψ, ν , q. The index (c)
above stands for colour.
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e= electron charge; note e< 0 in the notation used by Peskin&Schroeder.

Strong interactions: asymptotic freedom. Effective coupling scale dependent:
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N = 3, the 3 of SU(3). nf = 6.

Confinement hypothesis: Hadrons are colour singlets. Baryons: qqq, mesons: q q̄ . εabcqa qb qc and
q̄ aqa.

In addition there is weak interaction.

Examples: µ→ e+ ν̄e+ νµ. n→ p+ e+ ν̄e or d→ u+ e+ ē [sic].

k−→ µ−+ ν̄µ, k
−→ π−+π0. k− is ūs. s→u+ µ+ ν̄µ. π

− is ūd. s→u+ d+ ū .

Phenomenological model.

Fermi’s current current model.
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In the Standard Model these processes are described by Feynman graph:
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Figure 1.
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projects ψD onto ψL, upper two components of ψD.

For massless fermions ψL describes helicity − 1

2
.

Building standard model

Fermions divided into three families.

Masses in GeV
1 u d e νe 0.004 0.007 0.0005

2 c s µ νµ 1.5 0.2 0.1 10−13 (relative to νe)

3 t b τ ντ 175 4.5 1.8 10−11.5

First, focus on the first generation.

Divide all fermions into left and right components:

ψD=

(

ψL
ψR

)

ψR can in principle be expressed as a charge conjugated ψL. ψR = i σ2 ψL
′ (see problem 3.4c),

but I will not do this.

Then, left handed fermions are recombined into doublets.
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First generation fermions:

(
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dL

)

= qL uR dR

(
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)

= ψL νeR eR

U(1)EM is replaced by (SU(2)×U(1))W+EM.

L0 = q̄L i D qL+ ūR iD uR+ d̄R i D dR+ ψLi ∂ψL+ ν̄eR i ∂νeR+ ēR i ∂ eR
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Global SU(2)×U(1) symmetry of L0 to be gauged.
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Note SU(2) × U(1) does not interfere with SU(2)c. It is now straight forward to gauge this
SU(2) × U(1) symmetry and write down most general renormalizable SU(3) × SU(2) × U(1)
gauge invariant Lagrangian L.

Note there is only one mass term:
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Majorana mass term for right-handed ν (cf. problem 3.4 b).

Other mass terms are not SU(2)×U(1) invariant, because charges don’t ad up to zero. (But mν

should be the smallest mass?)

To give masses to fermions and W ,Z, use Higgs mechanism. Introduce scalar field:
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After gauging:

L=LA+Lψ+Lφ=LA+Lψk+LψY +Lφk+Lφν
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