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Standard model of elementary particles

Background history.

Before the standard model existed, four types of interactions were recognised.

1. Gravity.

2. Electromagnetism.

3. Weak interaction.

4. Strong interaction.

Strong interaction and weak interaction discerned: Weak violates symmetries, like P , C, T and
others. Responsible for decays, for example n→ p+ e+ ν̄ .

The standard model handles everything but gravity. The interactions are described in the
standard model as gauge interactions. Matter was divided into (A) hadronic matter: protons,
neutrons, nuclei, ... and (B) leptonic: e, µ, νe, nµ, � In addition, we have radiation energy, γ,
gravitons. Hadronic matter is strongly interacting, leptonic is not. In the Standard Model had-

rons are described by quarks, spin
1

2
fields. Leptons are also spin

1

2
fields. In addition we have

Higgs fields, spin 0.

Gauge principle for constructing theory, Standard Model of elementary particles defined by field
content and Lagrangian. L constructed using gauge principle.

1. Define matter fields.

2. Write L0 = the Lagrangian density of the free matter fields.

3. Choose continuous symmetry of L0, that is to be made into the gauge symmetry.

4. Gauge this symmetry.

5. The Lagrangian density of the Standard Model is the most general renormalizable Lagrangian
of the given fields, with the chosen gauge group, and perhaps with some additional global sym-
metry.

Examples:

1) Electrodynamics.

L0 = ψ̄
(

i ∂−m
)

ψ ψ= electron field

Continuous symmetry group: G=U(1): ψ→ e−ieΛ ψ. Infinitesimally δψ=− i eΛψ.

L= ψ̄
(

i D−m
)

ψ−
1

4
FµνF

µν , Dµ = ∂µ + i eAµ, δAµ = ∂µΛ

⇒Dµψ= e−ieΛDµψ

Fµν = ∂µAν − ∂νAµ, δ Fµν = 0

Note that L contains all renormalizable gauge invariant terms.

[

ψ̄ σµνψFµν

]

=M
2×

3

2
+2

=M5

1



Note: Trouble with ∂µψ and ψ → e−ieΛ(x)ψ is that ∂ψ = [ψ(x + ∆x) − ψ(x)]/∆x compares the
value of ψ at different points in space, and we rotate by a different amount Λ in different points.

2) Strong interactions.

We use quark fields:

L0 =
∑

a=1

3

q̄ a
(

i∂−mq

)

qa≡ q̄
(

i ∂−m
)

q

qa is the quark field. It is a Dirac spinor. a is colour index.

Gauge symmetry GS = SU(3)c.

qa→
∑

b=1

3

Ua
b qb≡U q

U = unitary 3× 3 matrix, U †U = 1.

4. U→U(x)

Gauge transformations: q→U(x) q

∂µq→ ∂µ(Uq)= (∂µU)q+U∂µq=U(∂µq+U †(∂µU)�
unwanted

)q

Cure: replace derivative by covariant derivative, Dµq=(∂µ +Aµ)q

(∂µ +Aµ)q→U(∂µ +Aµ)q

requires Aµq→U(Aµ −U †∂µU)q, i.e. Aµ→UAµU
†+ (∂µU)U †.

UU † = 1 ⇒
(

∂µU
†
)

+U
(

∂µU
†
)

= 0

Then q̄
(

i D−m
)

q≡ q̄ (i γµ(∂µ +Aµ)−m)q is OK as term in L (gauge invariant).

Are there other terms?

Note: q→U q. Dµq→UDµ q. This means that Dµ→UDµU
† =U (∂µ +Aµ)U †.

NB: here ∂µ acts on everything to the right. Also

[Dµ,Dν] = DµDν −DνDµ→U [Dµ,Dν]U †

Note: here free derivative operators cancelled. This implies that tr[Dµ, Dν]
n
is gauge invariant,

and e.g. tr([Dµ, Dν][D
µ, Dν]) is gauge invariant and Lorentz invariant; thus acceptable in L.

Thus

LQCD = q̄
(

i D−m
)

q+
1

8g2
tr(GµνG

µν)

(QCD: the theory of strong interactions is called quantum chromodynamics), where

Gµν = [Dµ,Dν

]

=(∂µ +Aµ)(∂µ +Aν)− (∂ν +Aµ)(∂µ +Aµ)=
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(Here ∂µ is free derivative operator, acts on everything to the right.)

= ∂µAν − ∂νAµ +AµAν −AνAµ

(Here ∂ acts only on A.) and Dµ = ∂µ +Aµ.

Aµ→UAµU
† + ∂µUU

†

Aµ shall be thought of as an infinitesimal SU(3) object, i.e. Lie algebra object.

U = eiεH =1 + i εH +O(ε2), U †U = 1 ⇔ H † =H

SU(3) matrix can be expressed using Hermitian matrix.

Aµ→ (1 + iεH)Aµ(1− iεH) + (∂µ(1+ iεH))(1− iεH)=Aµ + iε (HAµ −AµH + ∂µH)

δAµ = i (HAµ −AµH + ∂µ)

It is consistent to choose Aµ antihermitian. Common notation, expand Aµ in a basis:

Aµ =
∑

a=1

8

taAaµ

where {ta} = basis of antihermitian 3 × 3 matrices, chosen traceless for SU(3) (the S property of
SU(3)).

Figure 1. Gluon Feynman rules.

Photons are electrically neutral, but gluons have colour.

Asymptotic freedom.

First: scale dependence of couplings.

First QED;
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Figure 2.

〈Fig2〉=

∫

d4p

(2π)4
(− i e)

2 tr

(

γµ
i

p+ q−m
γν

i

p−m

)

= i Π(m, q,Λ)µν = i Πµν

Property qµΠµν = 0 by current conservation.

⇒Πµν =
(

ηµν q
2− qµqν

)

f(m, q,Λ)

[f ] =M0

Calculation shows:

f =
e2

2π2
ln
m2 + q2

Λ2
+� =

e2

2π2

(

ln

(

m2 + q2

µ2

)

− ln

(

Λ2

µ2

))

〈0|TAµ(x)Aν(0) e−i
∫

d4x′HI |0〉= 〈Fig3〉
iηµν

q2
+

− i

q2
i Πµν

− i

q2
+�

Figure 3.

Renormalize Aµν:

L0 =−
1

4
FµνF

µν→−
1

4
ZFµνF

µν

⇒ propagator 1/q2→Z/q2. Z: 1 +
e

12π
− ln

Λ2

µ2
.
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Figure 4.

〈Fig4〉 ūγµu ūγνu (− ie)
2(� )ηµν

(

i

q2
+

i

q2
i q2 f(m, q,Λ)

i

q2

)�
Now cutoff dependence can be absorbed into renormalisation of e. Scale dependent electric
charge. Result:

e2(q)≈
e0
2

1−
e0
2

12π2
ln

(

m2 + q2

m2

)

where e0 is the electron charge found in textbooks.

Effective charge increases with energy scale = increases when objects become close.

Fourier transform coulomb potential

δ3(r)=

∫

d3q

(2π)3
e−iq·r =−

1

4π
∇2 1

r

e2

4πr
=

∫

d3q

(2π)3
e2

q2
e−iq·r

For strong interactions the effective interaction change weakens at high momenta.
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