
2009–02–06 Lecturer: Per Salomonson

This is the last lecture about chapter 4 in Peskin&Schroeder. Also: Maxwell field, Renormalisab-
ility.

L=−
1

4
F µνFµν − jνAν

We could use operators as before, but quantising vector fields is more easily done using path
integrals.

Equations of motion:

∂2Aν − ∂ν ∂ ·A= jν

Fourier transform this:

Aν(x)= (2π)
−3

∫

d4p Ã
ν
(p) e−ip·x

⇒
(

p2δνµ− pνpµ
)�

4×4 matrix has
eigenvalues
(p2,p2,p2,0)

Ã
µ
=− j̃

ν

Multiply by pν:

0 =− pνj̃
ν

Require pνjν= 0⇔ conserved current.

The 4 × 4 matrix is not invertible ⇒ propagator cannot be constructed the usual way. For now,
use quick fix. Note that the photon field Aµ has 2 degrees of freedom, complete set of polarisa-
tion vectors εs

µ(π), s=1, 2.

εs
0 =0, εs

µ
pµ=0

also orthogonality εs
µ(p) ss′ µ

∗ (p)=− δss′.

Ansatz for Aµ:Ep= p0 = |p|.

Aµ(x)op = (2π)
3
∫

d3p

2Ep
√

∑

s=1

2
(

as(p) εs
µ(p) e−ip·x+ as

†(p) εs
µ∗(p) eip·x

)

[as(p), as′(p
′)] = (2π)

3
δ3(p− p

′) δss′

〈0|TAµ(x)Aν(x) |0〉= 〈0|θ(x0− y0)A+
µ(x)A−

ν (y)+ θ(y0− x0)A+
ν (ψ)A−

µ (x)|0〉=

= (2π)
−3

∫

d3p

2Ep

∑

s

(

θ
(

x0− y0
)

εs
µ εs

ν∗ e−ip·(x−y) + θ
(

y0− x0
)

εs
ν(p) εs

µ∗(p) eip·(x−y)
)

If e.g. pµ=(|p|, |p|, 0, 0): p points in the positive x direction.

∑

s

εs
µ εs

ν∗









0
0

1
1









µν=−

(

ηµν −
pµp̃ν+ p̃µpν

2|p|2

)

1



with pµ = (|p|, p) and p̃µ = (|p|, − p). We are doing Coulomb gauge quantisation. We drop the
last term [a bit unclear why].

Dµν(x)= (2π)
−3

∫

d3p

2Ep
(−ηµν)

(

θ(x 0) e−ip·x+ θ(−x0) eip·x
)

=

= (2π)
−4

∫

d4p(− ηµν)
i

p2 + iε
e−ip·x

Remark: In lecture 6, I defined

Sqp= 〈q1,� , qn|U(T , 0)|p1, p2〉

U(T , 0)= eiH0t e−iHt=T exp

(

− i

∫

0

t

dt′HII(t
′)

)

1) Note H0 just contributes a phase.

2) Sqp = scattering matrix element of Peskin&Schroeder, except they use ã†(p)|0〉. I used

a†(p)Box|0〉. ã†(p)= 2EpV /(2π)3
√

a†(p)|Box

(Sqp)P&S= I+(2π)4 δ4
(

p1 + p2−
∑

qi

)

iM

Which interactions are possible in Quantum Field Theory. Renormalisability ⇒ strong restric-
tions. To describe them, use dimensional analysis. We use units such that ~ = 1 and c=1:

L=T , E T =1 ⇒ only one unit left

Use mass M =E =1/T =1/L.
[ ∫

L d4x

]

=

[ ∫

H dt

]

=1

[L] =M4

L0 =
1

2

(

(∂ϕ)
2−mϕ

2ϕ2
)

+ ψ̄
(

i ∂−mψ

)

ψ−
1

4
F µνFµν

[∂] =M, [ϕ] =M, [Aµ] =M, [ψ] =M3/2, [mϕ] = [mψ] =M

In general LI =
∑

k
λkOk.

Example:

1

n!
λnϕ

n ⇒ [λn] =M4−n

e ψ̄ γµψAµ ⇒ [e] =M
4−2·

3

2
−1

=M0, dimensionless

Dimensionality criterion:

If any coupling constant has mass dimension less than zero, then the theory is nonrenormalis-
able. λn has mass dimension 4−n.
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Example: scalar ϕ4 theory and quantum electrodynamics (QED) have mass dimension zero
coupling constants. Such theories are just barely renormalisable ⇒ they are specially inter-
esting.

Example: Gravity. E = M m GN/R⇒ [GN] = [E R/M m] = M−2. Thus quantum gravity is not
renormalisable.

Example:

L= ψ̄
(

i∂−m
)

ψ− γ
(

ψ̄ψ
)2

[γ] =M
4−4·

3

2 =M−2: nonrenormalisable.

Problem arises as follows: consider two-particle scattering.

Figure 1.

schematically

γ2

∫

d4 p
1

p
·

1

p+ q
∼ γ2 Λ2

divergent. Make cutoff. Integrate only |p|<Λ. In general × +� = γ(1+F (q,Λ, γ)).
[

F ] =M0.

F (0,Λ, γ)=
∑

n=1

∞

cn γ
nΛ2n

Higher and higher powers of Λ⇒ nonrenormalisable.

Consider instead:

L=
1

2

(

(∂ϕ)
2
−m2ϕ2

)

−
λ

4!
ϕ4

[

m2
]

=M2, [λ] =M0: renormalisable

× +)(=λ+λ

∫

d4p

(p2 +m2)((p+ q)2 +m2
) ∼λ+λ2 lnΛ

This divergence can be handled by redefining (renormalising) λ.
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Figure 2. m2 + λ Λ2 + λ2Λ2 + � . F (0, λ, Λ) has dimension M2. Can be
∑

cnλnΛ2. Only quadratically

divergent. Can be handled.

Figure 3. Has dimension M−2
⇒ convergent quantum corrections.
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Example: Scalar QED = gauged U(1) symmetry of a complex scalar field.

L0 = (∂µϕ)
∗
∂µϕ−m2 ϕ∗ϕ

U(1) symmetry. δϕ=− iεϕ. Gauging:

∂mϕ→Dµϕ= (∂µ+ iεAµ)ϕ

L= (Dµϕ)
∗
Dµϕ−m2ϕ∗ϕ−

1

4
FµνF

µν=

= ∂µϕ∗∂µϕ−m2ϕ∗ϕ−
1

4
FµνF

µν − i e(ϕ∗∂µϕ− ∂µϕ∗ϕ)�
=jµ

Aµ+ e2 ϕ∗ϕAµAµ

−
λ

4
(ϕ∗ϕ)

2
. [λ] =M0. This term does not violate any symmetry, and should therefore be added

to L.

Figure 4. Scalar field exchange always gives attraction.
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