2009-02-06 Lecturer: Per Salomonson

This is the last lecture about chapter 4 in Peskin&Schroeder. Also: Maxwell field, Renormalisab-
ility.
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We could use operators as before, but quantising vector fields is more easily done using path
integrals.

Equations of motion:
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Fourier transform this:
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Multiply by p,:
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Require p,j” =0< conserved current.

The 4 x 4 matrix is not invertible = propagator cannot be constructed the usual way. For now,
use quick fix. Note that the photon field A* has 2 degrees of freedom, complete set of polarisa-

tion vectors €X' (m), s=1, 2.

€s=0, e p,=0

also orthogonality €X' (p) si/ .(p) = — 5.

Ansatz for A*: E,=p°=|p|.

@iy = )" [ LS (aulp)eblp) e+ al(p) et ()77

[aS(p)v as’(p/)] = (27T)3 53(1) - p/) Ossr

(O|T Ar(z) A¥(z) 0) = (0]6(2° — y°) A¥ (x) A (y) + O(y° — 20) A () A (x)]0) =
= (27T)_3/ %Z (9(;50 _ yO)sg ev* e~ ip-(z—y) + 9(y0 _ :CO) EZ(p) Eg*(p) eip'(zfy))

If e.g. p*=(|pl|,|p]|,0,0): p points in the positive = direction.
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with p* = (|p|, p) and p* = (|p|, — p). We are doing Coulomb gauge quantisation. We drop the
last term [a bit unclear why].
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Remark: In lecture 6, I defined
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1) Note Hy just contributes a phase.

2) S,p = scattering matrix element of Peskin&Schroeder, except they use af(p)|0). I used
al(p)Box/0). a'(p) =2,V /(27)* a'(p)[sox

(Sqp)Pees =T+ (27)* 54(271 +pa— Z Qi) iM

Which interactions are possible in Quantum Field Theory. Renormalisability =- strong restric-
tions. To describe them, use dimensional analysis. We use units such that A=1 and c=1:

L=T, ET=1 = only one unit left

Use mass M =E=1/T=1/L.

In general L7 =), A\xOy.

Example:
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Dimensionality criterion:

If any coupling constant has mass dimension less than zero, then the theory is nonrenormalis-
able. \,, has mass dimension 4 — n.



Example: scalar ¢* theory and quantum electrodynamics (QED) have mass dimension zero
coupling constants. Such theories are just barely renormalisable =- they are specially inter-
esting.

Example: Gravity. E = M m Gn/R = [Gx] = [E R/M m] = M~2. Thus quantum gravity is not
renormalisable.

Example:
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Figure 1.

schematically
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divergent. Make cutoff. Integrate only |p| <A. In general X +---=~(1+F(q,A,7)). [F]=M".

F(0,A,v)= Zc ~™ A2

Higher and higher powers of A = nonrenormalisable.

Consider instead:
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[m?]=M?, [\ =M renormalisable
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This divergence can be handled by redefining (renormalising) A.



Figure 2. m2+ X A2+ X2A2+ ... F(0,\, A) has dimension M2 Can be ¥ ¢,A"A2. Only quadratically
divergent. Can be handled.

Figure 3. Has dimension M ~2 = convergent quantum corrections.



Example: Scalar QED = gauged U(1) symmetry of a complex scalar field.
Lo= (") Oup —m*¢*¢

U(1) symmetry. dp = —icp. Gauging:
Omp— D= (0u+icA,)p
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- %(go*go)z. [A\] = M°. This term does not violate any symmetry, and should therefore be added
to L.
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Figure 4. Scalar field exchange always gives attraction.



