
2009–02–04 Lecturer: Per Salomonson

Last time σ was calculated.

LI =− 1
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p1 + p2→ q1 + q2

Figure 1. p1 + p2→ q1 + q2.

Result, in the case n= 2, i.e. elastic scattering:
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(assume p1 and p2 directed in the z direction)

= |p2
zE1− p1

zE1|= |εµxyν p1
µ
p2

ν |

is invariant under boosts in the z direction. To get another σ in another theory, use the same
procedure, get the same result, except iM is different.

Example: p1 + p2 → q1 + q2 in LI = − 1

6
λϕ3. Then one needs two vertices, there are three

Feynman graphs.

Figure 2. Two vertices give three graphs.

Now we have two vertices, so we must go to second order in the expansion
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External line creation and annihilation operators eliminate four factors ϕ. Left is

〈0|Tϕ(x)ϕ(y)|0〉=DF(x− y)=
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Feynman rules for computing iM in sclar field theories:

iM= sum of all connected amputated Feynman graphs evaluated as follows:

1. For each internal line with a momentum p, there is a factor
i

p2−m2 + iε
.

2. For each external line, a factor 1.

3. For each vertex × we get − iλ if LI =− λ
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4. Momentum conservation at each vertex.

5. Integrate
∫ d4p

(2π)4
for each undetermined momentum.

6. Divide by symmetry factor.

These are the momentum space Feynman rules. There are also the position space Feynman
rules:

2) For each vertex × you get − iλ
∫

d4x.

1) For each internal line from x to y you get DF (x− y).

3) For each external line to x you get exp(− ip ·x).
4) Divide by symmetry factor.

Comments. After all external particle operators have eliminated factors of ϕ, there will remain

〈0|Tϕ(x1)� ϕ(xn)|0〉

This is evaluated by expressing each factor ϕ in annihilation and creation parts ϕ(x) = ϕ+(x) +
ϕ−(x) and moving ϕ+ to the right, ϕ− to the left, picking up commutators each time a ϕ+

meets a ϕ−.

Example. If t1 > t2 > � > tn, then if i < j there will occur terms with factor [ϕ+(xi), ϕ−(xj)] =
DF(xi −xj) when ti>tj.

Wick’s theorem says that 〈0|Tϕ(x1)� ϕ(xn)|0〉= sum of all possible contractions tere are.

Example: 〈0|Tϕ1ϕ2ϕ3ϕ4|0〉= 〈fig〉

Figure 3. 〈0|T ϕ1ϕ2ϕ3ϕ4|0〉=�
where ϕ1ϕ2≡DF(x1−x2).
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Consider p1 + p2→ q1 + q2 to lowest order (λ2) in
λ

3!
ϕ3 theory.
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Figure 4. M=O(λ2).

Good idea: check that σ is as I claimed by going through the box quantisation scheme.

More accurate results are expected if higher oder graphs are added. They are obtained by
adding more vertices and lines in the above graphs, e.g. to order λ4:

Figure 5. Graphs to order λ4. Lots of possibilities. It is easy to forget something.

Disconnected graphs should not be added.

Figure 6. Disconnected graphs. Don’t include vaccum bubbles, or graphs with no exchange of

momentum.
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Only amputated graphs contribute.

Figure 7. This should not be included. Only amputated graphs are to be included.

Point 6: symmetry factors. They are a bit difficult to explain. Perhaps you should tro to get
them right in each case by yourself. Rule is, divide by the order of the symmetry of the dia-
gram.

Figure 8. Symmetry factors. In the loop, the lower part and the upper part can be exchanged; two lines

can be exchanged: symmetry factor 1/2.

Graph terminology: Graphs can be divided into complementary sets:

Connected + disconnected.

Tree graphs + loop graphs.

Other interacting quantum field theories

Example. Gauging free Dirac fermion theory produces gauge theory, interacting theory.

L0 = ψ̄
(

∂−m
)

ψ
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It has a continuous global symmetry δψ = − i ε ψ, for constant parameter ε. The symmetry can
be made local, ε→ ε(x) by adding a gauge field Aµ(x) and replacing derivatives with covariant
derivatives ∂µψ→Dµψ≡ (∂µ + iAµ)ψ.

δ∂µψ=− i ε ∂µψ− iε,µψ

δDµψ=− iεDµψ

δAµ = ∂µε

Gauge invariant, Lagrangian density:

L= ψ̄
(
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)

ψ− 1

4 e2
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µν

Fµν = ∂µAν − ∂νAµ, δFµν = 0.

Usually Aµ is redefined, Aµ→ eAµ⇒

L= ψ̄
(
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)

ψ− 1

4
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µν − e ψ̄γµψAµ

This is QED: quantum electrodynamics, for electrons, positrons and photons.
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Figure 9. Feynman rules for QED.

Feynman rules for QED:

1.a Propagator for electron and positron:

ip+m

p2−m2 + iε
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1.b Propagator for photon:

− iηµν

p2 + iε

2. Vertex.

3. External line factors.

4. Momentum conservation at each vertex.

5. Integrate over undetermined momenta.

6. Figure out the overall sign.
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