
2009–02–02 Lecturer: Per Salomonson

Today: Interacting quantum field theories. The past two weeks have been about free quantum
theories: the scalar field and the spin

1

2
fields. Now it is time for interacting fields: chapter 4 in

Peskin&Schroeder. Our treatment will differ a bit from that in the book. There is much more
formalism than we will treat here.

Example: Scalar ϕ3 theory. The Lagrangian is

L=
1

2

(

∂µϕ∂µϕ−m2ϕ3
)

− 1

6
λϕ3

λ is the coupling constant, assumed small (so that one can do perturbation theory). The factor
1/6 = 1/3! is conventional. (The number 3 in 1/3! comes from the exponent in ϕ3.) The
Hamiltonian is:

H =

∫

d3x

[

1

2

(

π2 + (∇ϕ)
2
+ m2ϕ2

)

+
1

6
λϕ3

]

=H0 +HI
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The Hamiltonian gives us the time evolution operator exp(− i H t).

Let us express this in terms of creation and annihilation operators:

H0 =
∑

p

Ep a†(p)a(p), HI ∼
(

a + a†
)3

(very schematically)

In HI above we are just keeping track of the number of creation and annihilation operators.

A two-particle state can be described by |p1p2〉 = a†(p1) a†(p2)|0〉. Time development with H0

just gives it a phase:

exp(− i H0t)|p1p2〉= exp(− i (E1 + E2)t)|p1p2〉

Assuming λ to be small, we can write exp( − i HI t) ≈ 1 + i t HI. (We can’t really factor exp( −
iH t) into a free-particle part and an interaction part, because things don’t commute. But never
mind that now.) HI can do interesting things. It will contain terms like:

− i t a†(p3)a
†(p4)a(p5) a†(p1) a†(p2)|0> =

Take annihilation operators to the right and the creation operators to the left.

=− i t a†(p3) a†(p4) (δ(p5− p1)a
†(p2)+ a†(p1) δ(p5− p2)

)

|0〉

∫

d3x ⇒ momentum conservation, p3 + p4 = p5

Feynman graph picture

Figure 1. Feynman diagram. Each particle is a line. Each interaction is a vertex. In ϕ
3 theory always

three lines meet at vertices.
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This violates energy conservation, since all particles have the same mass. But going to higher

order, exp( − i HIt) ≈ 1 + i t HI +
1

2
( − i t HI)

2, we get another vertex. Time development during

long time will produce the requirement of energy conservation, and forbid processes where one
particle produces two, kinematically. But to next order in perturbation theory one can have:

Figure 2. Two vertices.

− i t a5
†
a6 a7

(

− i t a3
†
a4
†
a2
†
)

|0〉
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Note that there is momentum conservation at each vertex. But particle four transfers
momentum from particle one to particle two ⇒ particles three and five have different momenta
than particles one and two.

This Feynman graph describes elastic scattering : 1 + 2 → 3 + 5. Elastic means that the same
particles come out as come in. There are three graphs contributing to this process in lowest
order.

Figure 3. Three graphs: check this.
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Figure 4. Note: This does not produce any scattering. There is no momentum transfer.

Figure 5. These are of higher order, but should in principle be included.
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Free L, H0 give particle lines. HI gives vertices. ϕn gives n particle vertices.

Computing a cross section

Example: p1 + p2→ q1 +� + qn.

Figure 6. p1 + p2→ q1 +� + qn

L=
1

2

(

(∂ϕ)
2−m2ϕ2

)

− λ

(n + 2)!
ϕn+2

Imagine space=box, side L, volume V = L3, existing during time 0 to T .

ϕ(x) =V −1/2
∑

p

1

2Ep

√

(

a(p) e−ip·x + a†(p) eip·x
)

p =
2π

L
(n1, n2, n3), p0 = m2 + p

2
√

,
[

a(p), a†(p)
]

= δpp′
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At time 0 our state is |p1, p2〉= a†(p) a†(p)|0〉.

〈q1,� , qn|exp(− i H T )|p1, p2〉

Probability that the state time T is |q1,� , qn〉 is |Sqp|2 where

Sqp = 〈q1,� , qn|exp(iH0T ) exp(− i H T )|p1p2〉

U(T , 0)= exp(iH0T ) exp(− i H T )

U(T , 0) is called interaction picture time evolution operator. Property:

i
d

dt
U(t, 0)= exp(i H0t)(H −H0)�

HI

exp(− iH t) = exp(iH0t)HI exp(− iH0 t)�
HII

exp(i H0t) exp(− iH t)�
=U(t,0)

HII(t)=
λ

(n+ 2)!
ϕn+2(x, t)free

Solution of differential equation:

U(t, 0) =T exp

(

− i

∫

0

t

HII(t
′)dt′

)

(time-ordered product)

Sqp = 〈q1,� , qn| − i
λ

(2 + n)!

∫

t=0

t=T

ϕfree
2+n d4x |p1, p2〉=

= 〈0|a(q1)� a(qn) � a†(p1)a
†(p2)|0〉=

=− iλ

∫

d4x V
−

n+2

2

(

∏

i=1

n
1

2Ei

√ exp(i q ·x)

)

1

2E1 · 2E2

√ exp(− i(p1 + p2) ·x)=

=− iλ−n/2

∫

0

T

dt

(

∏

i

1

2Ei

√
)

1

2E1 · 2E2

√ δp1+p2
−
∑

i

qi exp

(

∑

i

Ei −Ep1
−Ep2

)

Probability

|Sqp|2 =λ2 V −n
δp1+p2−

∑

i
qi

2 Ep1
· 2Ep2

·
(
∏

i
2Ei

)

∣

∣

∣

∣

∣

∫

0

T

dt exp

(

− i
(

Ep1
+ Ep2

−
∑

i

Ei

)

t

)∣

∣

∣

∣

∣

2

We are interested in not just one final state, but all in a volume element of momentum space ⇒
multiply by a factor V /(2π)3 · d3qi for each final particle, except the last one. (The last one is
fixed by momentum conservation, the δ-symbol.)

⇒ factor=
∏

i=1

n−1
V

(2π)3
d3qi =

V −1

(

(2π)3
)n−1

(

∏

i=1

n

d3qi

)

δ3

(

p1 + p2−
∑

i

qi

)

We want the differential cross section dσ. Remember the definition of cross section:

number of scattered particles= σ · |∆v | · time · beamdensity
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Figure 7. Cross section.

To get dσ we therefore divide our probability by

|∆v |=
∣

∣

∣

∣

p1

E1
− p2

E2

∣

∣

∣

∣

, ∆t = T , beamdensity=
1

V

Time integral:
∣

∣

∣

∣

∣

∫

−T/2

T/2

dt e−iEt

∣

∣

∣

∣

∣

2

=

∣

∣

∣

∣

2

E
sin

(

ET

2

)
∣

∣

∣

∣

2

=
4

E2
sin2

(

ET

2

)

≈Cδ(E)

C =

∫

−∞

∞

dE
4

E2
sin2

(

ET

2

)

= T

∫

−∞

∞

dx
4

x2
sin2
(

x

2

)

=

[

by complex contour
integration

]

= T · 2π

Putting everything together:

dσ = λ2 1

|∆v |
1

2Ep1
· 2 Ep2

∏

i=1

n
d3qi

(2π)3 · 2Eqi

(2π)
4
δ4

(

p1 + p2−
∑

i

qi

)

This is equation 4.79 in Peskin&Schroeder, with M=−λ.

Example. Take n= 2, p2 =− p1 = p.

dσ = λ2 1

2|p|/E
· 1

2 E · 2E
· d3q

(2π)3(2E)2
· 2π δ(2Ep − 2Eq)

∫

d3q =
1

2
· 4π

∫

q2dq = 2π

∫

q Eq dEq

σ = λ2 · 1

2|p| 4E

1

2
4π q Eq

(2π)3(2E)2
2π

1

2
=

λ2

32π(2E)2
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