
2009–01–30 Lecturer: Per Salomonson

Last time was the quantisation of the Dirac field, and some of its most basic properties. You
noticed that it becomes a bit messy with long expression. There is a lot more to be said, and
chapter 3 in Peskin&Schroeder is a heavy chapter. We won’t go into all of that, but a few things
remain to be said.

Symmetries and charges

General scheme (schematically): Assume there is a symmetry under ϕ→ ϕ+ δϕ:

δL=L(ϕ+ δϕ)−L(ϕ)= ∂λJ
λ

If the variation of the Lagrangian is a divergence, it only changes the action by boundary terms
and the equations of motion are not affected, as expected from a symmetry.

δL=
∂L
∂ϕ

δϕ+
∂L
∂ϕ,λ

δϕ,λ =

(

∂L
∂ϕ

− ∂λ
∂L
∂,λ

)�
=0, eq. of motion

δϕ+ ∂λ

(

∂L
∂ϕ,λ

δϕ

)

⇒ current conservation: ∂λj
λ = 0

jλ =
∂L
∂ϕ,λ

δϕ−Jλ

Q=

∫

d3x j0

generates symmetry [iQ, ϕ] = δϕ.

Example 1: Charge in Dirac theory:

ψ→ e−iεψ, δψ=− iε ψ, Jλ = 0, jλ = i ψ̄ γλ(− iψ) = ψ̄ γλψ

since

L= ψ̄
(

i γλ∂λ −m
)

ψ,
∂L
∂ψ,λ

= iψ̄γλ.

We get the charge

Q=

∫

d3xψ†ψ.

Write in terms of creation and annihilation operators:

ψ(x) = (2π)
−3

∫

d3p

2Ep

√

∑

s

(

as(p)us(p) e−ip·x + bs
†(p) vs(p) eip·x

)

Use relation 1 from before: us
†(p)us′(p)= 2Epδss′.

Q=(2π)
−3

∫

d3p
∑

s

(

as
†(p) as(p) + bs(p)bs

†(p)
)

=

= (2π)
−3

∫

d3p
∑

s

(

as
†(p) as(p)− bs

†(p) bs(p)+ (2π)3 δ3(0)
)
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The last term is a vacuum charge. An infinite vacuum charge. We don’t want it, so we throw it
away:

Q= (2π)
−3

∫

d3p
∑

s

(

as
†(p) as(p)− bs

†(p) bs(p)
)

We can replace the charge Q=
∫

d3xψ†ψ by

Q=

∫

d3x
1

2

(

ψ†ψ− ψψ†
)

There is no reason why ψ† should stand to the left, they are equal fields. This way, one takes
away the vacuum charge.

Example 2: Translation symmetry. δϕ= ερ∂ρϕ, which corresponds to xρ→ xρ ± ερ (never mind
the sign right now).

ερJ
λρ = ερ η

λρL, ερ∂λJ
ρλ = ερ ∂

ρL

L= 0 by equations of motion in Dirac theory.

Conserved current T λρ = i ψ̄γλψ ′ρ. Energy-momentum density. Energy-momentum vector:

pρ =

∫

d3xψ†i ∂ρψ

Example 3: Lorentz transformations.

δψ=− i

2
ωµν(J

µν +Sµν)ψ

Mλµν = iψ̄ γλ(− i Jµν − iSµν)ψ= iψ̄

(

xµ∂ν −xν∂µ +
1

4
[γµ, γν]

)

ψ=

= xµTλν − xνTλµ�
space part

+ ψ̄ γλ i

4
[γµ, γν]ψ�

spin part

When you integrate it you get conserved charge:

M µν =

∫

d3x

(

xµT 0ν −xνT 0µ + ψ† i

4
[γµ, γν]ψ

)

Operator generator of Lorentz transformation. This is Hermitian, so that Lorentz transforma-
tions acting on the Hilbert space are unitary operators. See Peskin&Schroeder page 59 about
this.

Remark:

S12 =
i

4

[

γ1, γ2
]

=
i

4

(

σ1σ̄ 2− σ2σ̄ 1

σ̄ 1σ2− σ̄ 2σ1

)

=
1

2

(

σ3

σ3

)

Hermitian. ⇒Mspin
12 is Hermitian.

S03 =
i

4

[

γ0, γ3
]

=
i

2

(

− σ3

σ3

)
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This is non-Hermitian. ⇒ Mspin
03 is non-Hermitian. (The spinor representation is not a unitary

representation.) We have to check the space part too, and it turns out that that is not Her-
mitian either.

Mspace
03 −

(

Mspa
03
)†

=

∫

d3x
(

−x3ψ̄
(

− iγk∂λ +m
)

ψ−Hermitian conjugate
)

=

= i

∫

d3xx3∂kψ̄γ
kψ=− i

∫

d3x ψ̄γ3ψ

The non-Hermicity of the space part exactly takes out that of the spin part.

“Then I can make you even more confused, I think.” — non-symmetric energy-momentum tensor

in field theory. TNoether
λρ = iψ̄γλ∂ρψ is not symmetric, Tλρ � T ρλ, but Tgravity

λρ must be symmetric.

Srednicki page 230 (linked from course home page) describes how TNoether
λρ can be modified by

adding terms into θλρ (symmetric). Belinfante tensor. Srednicki claims it equals Tgravity
λρ .

Tλρ and θλρ produce the same pρ. Moreover

Ξλρν = xµθλν − xνθλµ

No spin term. Ξ produces the same Lorentz generators M µν as Mλµν does.

Mspin
12 =

∫

d3xψ†S12ψ=

∫

d3xψ†1

2

(

σ3

σ3

)

ψ

Mspin
12 |ps〉=Mspin

12 as
†(p)|0〉=

[

Mspin
12 , as

†(p)
]

|0〉=

∫

d3xψ†(x)
1

2

(

σ3

σ3

)

[

ψ, as
†(p)

]

+
=�

=
1

2Ep

∑

s′

as′

†
us′

† (p)S12us(p)|0〉=± 1

2
as
†|0〉

ifp = 0 or if p = |p| ẑ .

Conclusion, at momentum p = |p| ẑ create a particle of spin sz:

a1
† 1

2

a2
† − 1

2

b1
† − 1

2

b2
† 1

2

us(p = 0)= 2
√

m

(

ξs
ξs

)

, ξ1 =

(

1
0

)

, ξ2 =

(

0
1

)

Charge conjugation:

Remember:

γµ =

(

σµ

σ̄ µ

)

, ψ=

(

ψL

ψR

)
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Define charge conjugated spinor

ψc =− iγ2ψ∗=

(

− i σ2ψR
∗

iσ2ψL
∗

)

ψc transforms like ψ under Lorentz transformations, i.e. − iσ2ψL
∗ transforms like ψR etc.

Basic reason:
(

σ1, σ2, σ3
)∗

=
(

σ1,− σ2, σ3
)

.

σ2σµ∗
(

σ2
)−1

= σ̄ µ, γ2[γµ, γν]
∗(
γ2
)−1

= [γµ, γν]

ψ→ ψc is a symmetry of Dirac theory. Charge conjugation a1
†(p)↔ b2

†(p).

Dirac fermion bilinears ψ̄aψb, a, b= 1,� , 4. Totally 16. Normally written in terms of ψ̄ψ, ψ̄γmψ,

ψ̄γµγνψ: transform under Lorentz transformations as scalar, vector, tensor, etc.

It is enough to take totally antisymmetric tensor, because ψ̄γµγν + ψ̄γνγµψ = ψ̄ψ2ηµν. ψ̄ψ,
ψ̄γµψ, ψ̄ [γµ, γν]ψ.

Define a matrix called γ5:

γ5 = i γ0γ1 γ2 γ3

ψ̄ψ ψ̄γµψ ψ̄ [γµ, γν]ψ ψ̄γµγ5ψ ψ̄γ5ψ

scalar vector tensor pseudovector pseudoscalar

1 + 4 +
4 · 3
2

+ 4 + 1 = 16

Chiral projection operator:

1

2

(

1− γ5
)

ψ=

(

ψL

0

)

,
1

2

(

1+ γ5
)

ψ=

(

0
ψR

)

Discrete symmetries in Quantum Field Theory: P , T , C.

The Lorentz group as a manifold has 4 components.

Specific Lorentz transformations you don’t reach by exponentiating infinitesimal transforma-
tions:

P (t,x)→ (t,−x)
T (t,x)→ (− t,x)
PT

C is charge conjugation.

Discrete symmetries P , C, T can be all be broken in quantum field theory. But the combination
PCT cannot be broken, which may be used to prove that the mass of the electron equals that of
the positron.

ψ̄γ5ψ= ψL
†
σ̄ µψL + ψR

†
σµψR

There is quantum field theory with only ψL (no ψR). It can have a kinetic term iψL
†
σ̄ µ∂µψL. It

can couple to a vector field. It cannot have Dirac mass term, since

mψ̄ψ=m
(

ψR
†
ψL + ψL

†
ψR

)

but it can have Majorana mass

mψ̄ψ, ψ=

(

ψL

(ψR)
c

)

=Majorana spinor

but then it cannot couple to a vector field.
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