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The course home page is found at http://fy.chalmers.se/~tfeps/qft.dir/qft.html

Adding one lecture: Monday 08–10.

In this course: elementary particle cross sections.

Motivation: Why study quantum field theory? Because relativistic quantum mechanics implies
quantum field theory. The real world is relativistic, and quantum mechanical, so to describe it
you need quantum field theory. Whenever both relativity and quantum mechanics are needed to
describe the world, you need quantum field theory. This is because:

1. Particles can be created and destroyed, e.g. γ+ γ→ e−+ e+. There is no general conservation
law for particle number. You can create matter particles from pure light. Elementary particle
physics is one area where quantum field theory is needed, and is the focus of this course.

Quantum field theory is useful in more contexts where particles are created and destroyed. That
happens some times in solid state theory. At such low energies you can’t produce electrons, but
in descriptions without conserved particle number, quantum field theory finds its uses neverthe-
less.

2. There is a causality problem in quantum mechanics. A wave function that is local at time 0
is usually spread all over space at time t > 0. Take for instance

ψ(x, 0)= (2π)3 δ3(x−x0) =

∫

d3p exp(i p · (x−x0))

Momentum is conserved, so plane waves such as those superimposed in the integral evolve like

∫

d3p exp(i p · (x−x0)− iEp t)= ψ(x, t)

This is not localised in any finite region of space. Non-relativistically, this is not a problem, but
in relativistic physics we should like it to be constrained to a light cone. Physical effects must
not propagate faster than the speed of light, c. (In quantum field theory we often use units such
that c=1 and ~ =1.)

Quantum field theory solves this problem. It has a feature called microcausality, which we will
comment on later on.

General features of Quantum Field Theory

One has one quantum field for each particle type. Example particle: the Higgs particle (which
has not been found yet). It has spin zero. It is described by a scalar field ϕ(x).

The electron and positron have spin 1/2. We use the field ψa(x). The index a= 1,� , 4, but it is
not a Lorentz index. We also have ψa

†(x).

You can think of the field as a classical field, but in the quantum theory it is a quantum field —
an operator. The field becomes an operator.

As a classical field ψa(x) is a complex valued field.

The photon has spin one, and the field is Aµ(x) — the classical field is the vector potential of
electromagnetism.

Example particle Spin Field

Higgs particle 0 ϕ(x)

Electron+positron 1/2 ψa(x), ψa
†(x)

Photon 1 Aµ(x)

Table 1.
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Calculations in quantum field theory is done using perturbation theory.

To define a quantum field theory, you have to define the fields you have, and the Lagrangian
density. The action of a field theory is written as an integral of the Lagrangian density L:

action=

∫

d4xL(x).

The Lagrangian density can be separated into two terms,

L=L0 +LI ,

where L0 is the free field Lagrangian density, describing free particles. It is quadratic in fields,
which gives linear equations of motion. Such linear equations are exactly solvable (we will see
how they describe free particles). LI describes interactions between the particles in L0. You do
perturbation theory in terms of the effects of LI, where the terms in the expansion are related
to Feynman diagrams.

So how can such a quadratic Lagrangian L0 describe free particles? (Compare with the har-

monic oscillator. En =
(

1

2
+n

)

~ω, n∈N=number of quanta.)

Free scalar field ϕ(x). This is the simplest free field.

L0 =
1

2
∂µϕ(x) ∂µϕ(x)−

1

2
m2ϕ(x)2

∂µϕ≡ ϕ,µ≡
∂ϕ

∂xµ

Indices are raised and lowered using matrices ηµν , ηµν, both equal to diag(1,− 1,− 1,− 1).

∂µ = ηµν ∂

∂xν
(remember the summation convention!)

Equation:

(

∂2 +m2
)

ϕ(x)= 0

This can be solved by a Fourier transformation:

ϕ(x) = (2π)
−3

∫

d4p ϕ̃(p) e−ip·x

The equation of motion implies

ϕ̃(p)= δ(p2−m2)ã(p)

Identity

δ(p2−m2) =
1

2Ep
(δ(p0−Ep)+ δ(p0 +Ep)), Ep = p

2 +m2
√

This identity comes from the factorisation:

0 = p0
2− p

2−m2 =
(

p0− p
2 +m2

√

)(

p0 + p
2 +m2

√

)

, δ(a(x)x)=
1

a(0)
δ(x), for nice functions
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(without zeroes) a(x). If a(x) has zeroes we get additional terms, which was the case above.

Note that p2 = pµp
µ = (p0)

2 − p
2, where p is the three-dimensional momentum. Defining Ep ≡

p
2 +m2

√

, so we get

δ(p2−m2)= δ
(

p0
2− p

2−m2
)

= δ
(

p0
2−Ep

2
)

= δ((p0−Ep)(p0 +Ep))=

=
1

2Ep
(δ(p0−Ep)+ δ(p0 +Ep))

The first of these two deltas is the positive energy mass shell, while the second is the negative
energy mass shell.

Figure 1. Positive and negative energy mass shell.

ϕ(x)= (2π)
−3

∫

d4p ϕ̃(p) e−ip·x =(2π)
−3

∫

d4p δ(p2−m2)ã(p) e−ip·x =

= (2π)
−3

∫

d3p

2Ep

(

ã(p) e−ip·x + ã(p)∗ eip·x
)

with p0 = p
2 +m2

√

,

where we use that ϕ(x) is real, so ã(p)∗ = ã( − p). One defines ã(p) (a function of the three-
momentum) by

ã(p) = ã(p0, p) with p0 = p
2 +m2

√

=Ep.
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Quantisation. We quantise by using the correspondence between the Poisson bracket [ ∗ , ∗ ]PB

and the commutator [ ∗ , ∗ ]. We will need the conjugate momentum:

π(x) =
∂L

∂ϕ̇(x)
= ϕ̇(x),

π(x) = i(2π)
−3

∫

d3p

2Ep

·Ep

(

ã(p) e−ip·x − ã(p)∗ eip·x
)

The correspondence relation is

[ ∗ , ∗ ]PB →
1

i~
[ ∗ , ∗ ]

where [ ∗ , ∗ ] is the quantum mechanical commutator. (We set ~ = 1.) ϕ, π, ã , ã∗ become oper-
ators satisfying commutation relations:

[π(x), ϕ(y)]

∣

∣

∣

∣

x0=y0

=− i δ3(x− y)

[ϕ(x), ϕ(y)]

∣

∣

∣

∣

x0=y0

= 0 = [π(x), π(y)]

∣

∣

∣

∣

∣

x0=y0

⇒

{

[

ã(p), ã(p′)†
]

= (2π)3 2Ep δ
3(p− p

′),

[ã(p), ã(p′)] = 0 =
[

ã(p)†, ã(p′)†
]

= 0

Show this, using
∫

d3p exp(i p · (x− y))= (2π)
3
δ3(x− y) and expressions for π(x), ϕ(x).

ã(p) and ã(p)† are annihilation and creation operators, respectively, for particles of momentum
p. If you have seen these operators and are uncomfortable with the δ3(p − p

′), one can intro-
duce a large box, making momentum discrete: [ap, ap′

† ] = δpp′. If we define ã differently, we can

remove the 2Ep in
[

ã(p), ã(p′)†
]

, so ã(p) and ã(p)† are unconventionally normalised annihila-
tion and creation operators.

One can define a Hilbert space that contains a vacuum state |0〉 and has the property ã(p)|0〉 =
0: any annihilation operator acting on the vacuum state is zero. The vacuum has 〈0|0〉 = 1. A

one particle state is |p〉 ≡ ã(p)†|0〉. A two-particle state is |p1, p2〉 = ã†(p1) ã
†(p2)|0〉. Such a

Hilbert space is called a Fock space.

〈p|p′〉=
(

ã†(p)|0〉
)†
ã†(p′)|0〉= 〈0|ã(p) ã†(p′)|0〉= 〈0|

[

ã(p), ã†(p′)
]

|0〉=

=2Ep(2π)
3
δ3(p− p

′).
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