
2012–05–28 Lecturer: Bengt E W Nilsson

This is supposed to be the last session.

Affine Lie algebras: ĝ (We call an ordinary finite Lie algebra g.)

Last time we had gloop: Tm
a , T a∈ g.

⇒[Tm
a , Tn

b] = fab
c Tm+n

c , m∈Z, n∈Z.

Add a central extension. That’s possible since it is allowed by the Jacobi identity.

K⇒
{

[Tm
a , Tn

b] = fab
c Tm+n

c +mδm+n,0κ
abK

[K,Tm
a ] = 0

Cartan–Weyl basis. Hi∈CSA(g)

[

Hm
i , Hn

j
]

= kmδij δm+n,0

where k is the eigenvalue of K.

Note: Only H0
i∈CSA(ĝ).

Roots:

[Hm
i , En

α] =αiEm+n
α

[

Em
α , En

β
]

=











ε(a,β)Em+n
α+β ⇒Em+n

α+β is a root

αiHm+n
i + kmδm+n,0 (α=−β)

0 otherwise

[K,Hm
i ] = [K,Em

α ] = 0

Often one imposes hermiticity: (Em
α )†=E−m

−α etc, and K †=K.

Let’s try to find the CSA(ĝ): H0
i,K. Enough? (Are these a maximal Cartan subalgebra?)

Roots

[H0
i, En

α] =αiEn
α

[K,En
α] = 0

⇒ Root of Em
α : (αi, 0), which is infinitely degenerated (due to the m index).

But also:
[

H0
i, Hn

j
]

=
[

K,Hn
j
]

=0, n� 0. ⇒Root (Hn
i )= (0, 0)?

⇒H0
i,K is not maximal!

Cure: Add one more generator D:

[D,Em
α ] =mEm

α

[D,Hm
i ] =mHm

i

[D,K] = 0

In fact, when combining the affine and Virasoro algebras (Sugawara construction) then D=−L0.

Now things are better: CSA: (H0
i,K ,D).
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Roots:

Em
α : a=(αi, 0, m)

Hm� 0
i : a=(0, 0, m)

↑
always
zero

〈fig〉
What is the Killing form κ̂AB. A=(m

a , k, d)

Use the Killing form invariance:

κ̂(x, y): κ̂([z, x], y)+ κ̂(x, [z, y]) = 0, x, y ∈ ĝ

1). z=D, x=Tm
a , y=Tm

b

⇒κ̂(Tm
a , Tn

b)∼ δm+n,0

2) with z=T0
c instead

κ̂(Tm
a , Tn

b)= κ̂abδm+n,0

κ̂AB
(

CSA
)

is rank r+2 with signature (r+1, 1).

κ̂AB=







	 0

0 1
0 1 0





K
D

So: affine KM algebras have Lorentzian signature in the CSA.

Positive roots

1) (α, 0, n), n > 0, ∀α∈ g

2) (α, 0, 0), α> 0 in g.

Simple roots:

1) αsimple in g: (αsimple, 0, 0).

2) (−θ, 0, 1)

Example: A2
(1)

, SUk(3). k: eigenvalue of K called level.

A2: A=

(

2 −1
−1 2

)

(SU(3))

A2
(1)

: simple roots:














a(1)=
(

α(1), 0, 0
)

a(2)=
(

α(2), 0, 0
)

a(0)=(−θ, 0, 1)

Affine Cartan matrix is 3-dimensional (not 2+1+1 dimensional).

Metric to use






κab 0 0
0 0 1
0 1 0






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V =(v, vk, vd),

W =(w,wk, wd)

⇒V ·W = v ·w+ vkvd+ vdwk

a(1) · a(1)= a(2) · a(2)=2

a(0) · a(0)=(−θ) · (−θ)= 2

a(1) · a(2)=−1

a(0) · a(1)=(−θ) ·α(1)=−α(1) ·α(1)−α(1) ·α(2)=−2− (−1)=−1.

A2
(1): A=





2 −1 −1
−1 2 −1
−1 −1 2





⇒detA=0

Check!

Problem sp(2;R) is isomorphic as a real Lie algebra to another one. Which one? Prove it.

sp(2,R)∼C2

Could be isomorphic to B2. Same Dynkin diagram. B2≈ SO(5), dim
5× 4

2
= 10.

sp(2,R): 4× 4 real matrices M that leave invariant the symplectic form J

J =









0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0









M =

(

A B

C D

)

: MJ + JMT =0

MJ =

(

−B A

−D C

)

JMT =

(

BT DT

−AT −CT

)

⇒B=BT , C =CT , D=−AT , A=−DT

A is independent 2× 2, dim = 4. B: 3, C =3. Sum = 10.

So C2 is isomorphic to D2 as complex.

Now, real case: C2: sp(2,R).

B2 can be SO(5), SO(4, 1), SO(3, 2). SO(5) is compact, but sp(2,R) is not. SO(4, 1) and SO(3, 2)
are left.

Find an explicit representation of these two Lie algebras that is “the same” as the fundamental
representation of sp(2,R). It must be a spinor representation.
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From spinor representation in any even dimension d one can easily construct spinor representation
in d+1.

SO(4): {γi, γj}=2δij. i, j=1, 2, 3, 4.

SO(5): {γI , γJ}=2 δIJ, I , J =1, 2, 3, 4, 5. Generators γ[IγJ]≡ γIJ.

SO(4): γ5= γ1γ2 γ3 γ4⇒ γI =(γi, γ5). (γ5)2=1.

SO(1,3): Dirac spinors: 4-component, complex. Can divide into Weyl and anti-Weyl. You can also
divide into Majorana spinors: 4-component, real.

Is it consistent to have Weyl and Majorana at the same time? Not possible for SO(1, 3).

Use the Majorana representation for SO(1, 3) to construct a real spinor representation in 5 dimen-

sions. γµ: Majorana, real. γ5= γ0γ1γ2γ3⇒ (γ5)2=−1. ⇒SO(1, 3) Majorana ⇒ SO(2,3).

σ1, σ2 real, σ2 imaginary, iσ2= ε real.
{

σµ=(1, σi)

σ̄ µ=(−1, σi)

γµ=

(

0 σµ

σ̄ µ 0

)

=(ε⊗1, σ1⊗ σi)

Unitarity

In physics the symmetry is often (in quantum mechancis) realized in a unitary fasion. If the
Lie algebra in question is compact (as QM, not QFT), all finite dimensional finite dimensional
representations are unitarizable. But in QFT one often has non-compact groups (like the Lorentz
group) then all unitary representations are infinite-dimensional.

Consider SU(2) and SU(1, 1)≈ SO(2, 1)

Use a harmonic oscillator realization:

[

ai, aj
†
]

= δij , i=1, 2

SU(2): we have J± and J3.

[J3, J±] =±J±, [J+, J−] = 2J3

Put J3=
1

2

(

a1
†a1− a2

†a2
)

, J+= a1
†a2, J−= a2

†a1.

Note: J3
†=J3, J±

† = J∓. Compact: all three generators. By this we mean iJ3.

SU(1,1) K3= J3. K+= i a1
†a2. K−= i a2

†a1.

SU(2).

ai
†|ni〉= ni+1

√
|ni+1〉

|ni〉∼
(

ai
†
)n|0〉, ai|0〉=0

ai|ni〉= ni
√ |ni− 1〉

|n1, n2〉= |n1〉⊗ |n2〉

⇒J3|n1, n2〉= 1

2
(n1−n2)|n1, n2〉
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Note:

N ≡ 1

2
(n1+n2)⇒N |n1, n2〉= 1

2
(n1+n2)|n1, n2〉

Single-valuedness: eiφJ3=ei(φ+4π)J3.

n1−n2∈Z

J3∈ 1

2
Z

The eigenvalue of J3 is called m.

〈fig〉

Unitarity

〈n1+1, n2+1|J+|n1, n2〉= (n1+1)n2

√

Compare to J−

〈n1, n2|J−|n1+1, n2− 1〉= (n1+1)n2

√

Hermitian conjugate on the J+ expression gives you J− using (J+)
†= J−.

Generalization Let n1, n2 be also both negative.

〈n1+1, n2− 1|K+|n1, n2〉= i (n+1)n2

√

(K+)
†=K−⇒ −(n1+1)n2

√

must be real. One n is negative, and one is positive.

〈fig〉.

Discrete series D+
j
,D−

j . Principle representation Dp, j+
1

2
= p:−1

2
6 p6

1

2
. Doesn’t stop in either

direction.

Complementary: j+
1

2
= i β.
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