
2012–05–11 Lecturer: Bengt E W Nilsson

(Next week: no lecture. After that two more lectures. And one more home problem. Or two.)

Chapter 8: Real Lie algebras (sometimes called real forms)

In the begining of the course, we talked about various simple Lie algebras, such as

sl(2,R) = {M : trM =0, 2× 2 real matrices}.

One version (i):
{(

1 0
0 −1

)

,

(

0 1
0 0

)

,

(

0 0
1 0

)}

Another version (ii):
{(

1 0
0 −1

)

,

(

0 1
1 0

)

,

(

0 1
−1 0

)}

κ(i)
ab=





2 0 0
0 0 1
0 1 0



, κ(ii)
ab =





2 0 0
0 2 0
0 0 −2





Related by diagonalization and renormalizing the generators.

Note: From (ii) we see that sl(2,R) has one compact and two non-compact elements.

sp(1,R)≈ sl(2,R)≈ su(1, 1)

Now: SU(2): Then we have 2× 2 complex matrices, with det=1. Lie algebra su(2): antihermitian
with zero trace. Easy enough to tabulate:

su(2)=

{

i

2
σi

}

The factor 2 is conventional, to get the normalization of the Lie algebra in a nice form.

κab∝





−2 0 0
0 −2 0
0 0 −2



.

We see that all three generators are compact. How to see compact:

e
α
(

0 1

−1 0

)

∼ eiα= cosα+ i sinα is compact.

Comes out as a minus sign in the Killing form.

This is the same as for so(3).

Example of isomorphisms.

so(1, 2)= {T a}=











0 1 0
1 0 0
0 0 0



,





0 0 1
0 0 0
1 0 0



,





0 0 0
0 0 1
0 −1 0











κab=





2
2

−2





[T 1, T 2] =T 3, [T 2, T 3] =−T 1, [T 3, T 1] =−T 2
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su(1, 1):










T 1= iσ3

T 2= σ1

T 3=−σ2

⇒











[T 1, T 2] = 2T 3

[T 2, T 3] =−2T 1

[T 3, T 1] =−2T 2

sp(1,R):










[S1, S2] = 2S3

[S2, S3] =−2S1

[S3, S1] = 2S2

You can’t stare at the algebra here and say this has to be su(1, 1). Go to Dynkin and then to the
Killing form.











S2=T 2

S1=T 3

S3=T 1

sl(2,C):

H =

(

1 0
0 −1

)

, E+=

(

0 1
0 0

)

, E−=

(

0 0
1 0

)

[H,E±] =±2E±, [E+, E−] =H

It’s really sl(2, R) that we have here, since there is no i anywhere. With coefficients in C, this
becomes the complex A1≈ sl(2,C) algebra.

Real forms:

i) Coefficients C→R. Restrict them to be real.

⇒sl(2,R): κab=





2 0 0
0 0 1
0 1 0





This is called the split form (or normal). This is the maximal non-compact real form of A1.

ii) maximal comapct case: here su(2). We have to introduce an i somewhere.

H,E+, E−→E+−E− is compact. Here
(

0 1
−1 0

)

which is obviously compact.

H,E++E− non-compact. Multiply by i, then these become compact: iH, i(E++E−).

This is then su(2).

sl(2,C): this can be viewed as a six-dimensional real algebra:

X ∈ sl(2,C): X =
∑

i=1

3

λiT
i with λi∈C and T i compact (su(2))

λi= ai+ i bi

⇒X =
∑

i

aiT
i+
∑

i

bi (iT
i)
�

≡U i
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(iT i) are new generators in the real algebra. We call them U i.











[T i, T j] = εijkT k

[T i, U j] = εijkUk

[U i, U j] =−eijkT k

This is the Lorentz algebra, so(1, 3).

⇒so(1, 3)≈ sl(2,C).

Note: Consider xµ (coordinates in special relativity), and form X =xµσµ, σµ= {1, σi}.

X =

(

x0+ x3 x1− ix2

x1+ ix2 x0− x3

)

detX =−ηµνX
µXν

Note: Dirac γ matrices:

γµ=

(

0 σµ

σ̄µ 0

)

, σ̄µ=(−1, σi)

⇒{γµ, γν}=2 ηµν

γµν =

(

σµσ̄ ν 0
0 σ̄ µσν

)

(γµ)A
B: → Λµ

ν
�

SO(1,3)

ω γνω−1= γµ

Lie algebra: ερσ(δ
ρσ)µν , ω =

1

4
ερσγ

ρσ. (γµ)A
B are invariant matrices (Cl.–Gordan coefficients).

spin× spin= vector.

Killing form κ(T a, T b)= κab= tr(adTa ◦ adT b)∼ tr faf b.

• κab=κba.

• κ(T a, [T b, T c]) =κ([T a, T b], T c)⇒Theorem κab is unique up to normalization.

adT bκ(T a, T c)= 0.

Real forms

complex compact split
An−1 sl(n,C) su(n) sl(n,R)

sl(n,R)/K ≈ hyperbolic space. K: maximal compact subgroup (SO(n)).

complex compact split
An−1 sl(n,C) su(n) sl(n,R)
Dn so(2n), so(p, q) so(n, n) where p+ q=2n

E8, E(8,−248), E(8,−24), E(8,8)

compact
dim= 248
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dim = 248. There is a subgroup SO(16) that had dimension 120.

8, 120 + 120 ⇒ E+−E−: 120 (SO(16))
Hi E+ E−

⇒i on H,E++E−: 128 non-comact.

Chapter 9: Loop algebras

This has many aspects, that are important and come up in different situations. This is related to,
as we will see, affine algebras (detA=0, Kac–Moody). We want to, in a logical way, construct them.

Appear in string theory, leads to CFT in two dimensions. Also in phase transitions (virasoro).

Recall: All finite-dimensional Lie algebras can be related to finite-dimensional matrices.

How do we construct infinite-dimensional Lie algebras, like the affine?

First step: Construct loop algebras.

Consider a finite-dimensional Lie algebra — call it ḡ — with basis B̄ = {T a, a=1, 2,	 , dim ḡ}.

Now we generalize the sl(2,C) construction as a real Lie algebra: generators T a, a=1, 2, 3.

X = zaT
a=(aa+ i ba)T

a= aaT
a+ ba (iT

a)→ a six-dimensional Lie algebra.

Generalization: za→ fa(z) where z ∈ S1, z = eiθ⇒ expand fa(z) in terms of mode functions einθ,

i.e. fa(z) T
a=
∑

n∈Z
αa

nznT a=
∑

n∈Z
αa
nT̃n

a
where T̃n

a
≡T a⊗ zn.

Note: This way we have maps S1→ group.

g(z)= e
∑

fa(z)Ta

The loop algebra

[

T̃m
a
, T̃n

b
]

= [T a⊗ zm, T b⊗ zn] = [T a, T b]⊗ zm+n= fab
c T

c⊗ zm+n= fab
c T̃m+n

c
≡ fambn

cp T̃
c
p

⇒fambn
cp =fab

c δm+n,p

This is called ḡloop.

Note: The zero-mode algebra is ḡ.

In order to use this algebra in physics we need unitary representations. But (as for the Witt algebra)
it has no such representations. We need to generalize it with a central term.

The way to get an affine algebra out of the loop algebra is to add some generators keeping the
Jacobi indentity.

The affine algebra has a central term (central extension) which the loop algebra does not have. To
see this property in the affine case, recall that the affine Cartan matrix has detA=0. Null vector:
AaQ =0 or aiA

ji=0. So form

K =
∑

i=0

r

aiH
i

⇒[K,Hi] = 0

[K,E±
i ] =

∑

i

ai
[

H i, E±

j
]

�

=±AjiE±
j

=0
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i.e. K commutes with the whole algebra, including itself. It is a central element. Canonical central
element.

Try to get the loop algebra to pick up this property: add a central term (drop tilde)

[Tm
a , Tn

b] = fab
c Tm+n

c +(fab
i)mnK

i

where i runs over the set of K’s, if there are many.

Is this possible without violating the Jacobi? Yes. But some Ki are (a) impossible, and
some “trivial” (b).

(a). (fab
i)00 =0 since ḡ has no such central term.

(b). Redefining T a
n →T a

n −(fab
i)0nK

i we can put (fab
i)0n=0.

The last case: (fab
i)mnK

i. These are not trivial in the above sense. But if nonzero, they must be
tensors in ḡ. We must be able to write this object in terms of tensors in ḡ.

(fab
i)mn= κ̄ ab(fi)mn

(fi)mn:mn: antisymmetric. δm,n, mδm+n,0.

(fab
i)mn= κ̄ ab(fi)mn= κ̄ abmδm+n,0

ĝ:
{

[Tm
a , Tn

b] = fab
c T

c
m+n +mδm+n,0κ̄

abK

[K,Tm
a ] = 0

To understand this better we need one more generator D: [D,Tm
a ] =mTm

a , [D,K] = 0.

g≡{Tm
a ,K,D}= {ĝ, D}

with Tm
a from ḡloop.

The Killing form

κ=







κ̄ ab δm+n,0 0

0
0 1
1 0







Matrix ordered as (gloop,K ,D).

κ(D,D) = 0 by assumption.
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