2012 - 04 - 13

Chapter 6: General theory of Lie algebras and their representations.

The goal is to turn the results obtained for $\mathfrak{sl}(2)$ and $\mathfrak{sl}(3)$ into a general theory and find the general classification (finite dimensional Lie algebras).

DEFINITION. Lie algebra ${\mathfrak g}$

1) is a vector space whose elements are called generators of \mathfrak{g} ,

2) \exists a bilinear product called the Lie product such that $[x, x] = 0 \forall x \in \mathfrak{g}$.

3) Jacobi idientity.

In a basis T^a of the Lie algebra \mathfrak{g} :

$$[T^a,T^b] = f^{a\,b}_{\ c}T^c, \quad a,b,c=1,\ldots,\dim\mathfrak{g}$$

 $f^{ab}{}_c$ are called structure constants.

EXAMPLE. Adjoint representation ad_x acts with the Lie bracket $[x, \cdot]$ on the representation space (module) which in this case is \mathfrak{g} itself:

$$\begin{aligned} &\operatorname{ad}_x \cdot y = [x, y] \\ \Rightarrow & (T^a)^b {}_c = - f^{a \, b} {}_c \end{aligned}$$

EXERCISE: Check this.

DEFINITION. \mathfrak{g} is abelian iff $[x, y] = 0 \forall x, y \in \mathfrak{g}$.

DEFINITION. \mathfrak{g} is *simple* iff \mathfrak{g} has no (proper) invariant subalgebras (no proper ideals).

DEFINITION. \mathfrak{g} is *semi-simpole* iff $\mathfrak{g} = \sum_i \oplus \mathfrak{g}_i$ where all \mathfrak{g}_i are simple.

Vector spaces V

DEFINITION. Elements are called *vectors*. There exist addition and multiplication by scalar. For scalars $\alpha \in \mathbb{F}$ and vectors $v \in V$ we have distributivity:

1)
$$\alpha(v_1 + v_2) = \alpha v_1 + \alpha v_2$$

2) $(\alpha + \beta) v = \alpha v + \beta v$

DEFINITION. The span (or hull). Given a subset of vectors M, $\operatorname{Span}_{\mathbb{F}}(M)$ is a vector subspace of all linear combinations of these vectors.

DEFINITION. A basis \mathcal{B} is a subset of vectors in $\operatorname{Span}_{\mathbb{F}}(M)$ that span the whole subspace and is linear independent.

DEFINITION. $d = \dim_{\mathbb{F}} V = |\mathcal{B}|.$

DEFINITION. Direct sum $V_1 \oplus V_2$ of vector spaces is such that

1)
$$\alpha(v_1 \oplus v_2) = \alpha v_1 \oplus v_2$$

2) $(v_1 \oplus v_2) + (w_1 \oplus w_2) = (v_1 + w_1) \oplus (v_2 + w_2).$

If $\mathcal{B}_1 = \{\hat{v}_i\}$ and $\mathcal{B}_2 = \{\hat{w}_i\}$, then a basis in $V_1 \oplus V_2$ is

$$\mathcal{B} = \{\hat{v}_i \oplus 0\} \cup \{0 \oplus \hat{w}_a\}$$
$$|\mathcal{B}| = |\mathcal{B}_1| + |\mathcal{B}_2|$$
$$d = d_1 + d_2$$

EXAMPLE. A vector in D dimensions can be decomposed into vectors in two subspaces $(d = d_1 + d_2)$.

$$A_M = (A_\mu, A_m)$$

EXAMPLE. What about the metric?

$$g_{MN} = \left(\begin{array}{cc} g_{\mu\nu} & g_{\mu n} \\ g_{m\nu} & g_{mn} \end{array}\right)$$

Which vector space are $g_{\mu\nu}$ and $g_{\mu n}$ in? One index belongs to V_1 , one index belongs to V_2 . $g_{\mu\nu}$: $V_1 \otimes V_2$.

First. Cartesian (or Kronecker) product

$$V_1 \times V_2 = \{(v_1, v_2): v_1 \in V_1, v_2 \in V_2\}$$

Ordered pairs.

 $g_{\mu n}$ has properties $\alpha(g_{\mu n} + g'_{\mu n}) = \alpha g_{\mu n} + \alpha g'_{\mu n}, (\alpha + \beta) g_{\mu n} = \alpha g_{\mu n} + \beta g_{\mu n} \Rightarrow g_{\mu n} \in V_1 \otimes V_2.$

So \otimes is obtained from \times by demanding that $(\xi v_1, v_2)$ is identified with $(v_1, \xi v_2)$ since this eliminates $(0, v_2)$ and $(v_1, 0)$.

Lie algebras: The Cartan–Weyl basis.

- Gives the mathematical foundation for further analysis of Lie algebras.
- A step towards the classification.
- Later: general analysis of Lie algebras: Levi's theorem.

Goal is to understand why, and if, one can always formulate all properties of a simple Lie algebra in terms of only A^{ij} , the Cartan matrix.

Recall $\mathfrak{sl}(3)$:

1)

$$\begin{bmatrix} H^i, E^j_{\pm} \end{bmatrix} = \pm A^{ji} E^j_{\pm}$$
$$A^{ji} \equiv (\alpha^{(j)})^i$$

2)

$$\alpha^{(i)} \cdot \alpha^{(j)} = A^{ij}, \quad G^{ij} = A^{ij}$$

3)

$$\operatorname{tr}(H^i H^j) = A^{ij}$$

Killing form κ^{ij} .

Also in fact (4) $[E_{+}^{1}, [E_{+}^{1}, E_{+}^{2}]] = 0$, i.e. $(ad_{E_{+}^{1}})^{1-A^{21}}E_{+}^{2}P = 0$. Serre relation.

6.1. Cartan subalgebras.

We will describe Lie algebras by using different bases:

1) a general one is Cartan–Weyl.

2) at the oend of the day we define *Chevalley* basis.

The first step will be to identify the *Cartan* algebra \mathfrak{g}_0 .

$$\mathfrak{g}_0 \equiv \operatorname{Span}_{\mathbb{C}} \{ H^i : i = 1, ..., r \} \quad (r = \operatorname{rank})$$

such that r is the maximal number of commuting elements in $\mathfrak{g}: [H^i, H^j] = 0 \forall i, j.$ \Rightarrow All elements H^i in g_0 are simultaneously diagonalizable, i.e.

$$\left[\underbrace{x}_{\in\mathfrak{g}_0}, \underbrace{\tilde{T}^a}_{\mathfrak{g} \text{ not in } \mathfrak{g}_0}\right] = f^{xa}{}_b \tilde{T}^b = f^x \,\delta^a{}_b \tilde{T}^b$$

secular equation

$$\det\left((f^x)^a_{\ b} - f^x \,\delta^a_{\ b}\right) = 0$$

For this equation to have d solutions, which means that we must allow for complex numbers.

6.2. Roots (Note: we don't assume any relation between $(\alpha^{(j)})^i$ and A^{ji} here.)

The previous relation is often written

$$[h, y] = \alpha_y(h) y$$

 $h \in \mathfrak{g}_0, \, y \in \mathfrak{g}. \, \, \alpha_y(h) = \mathrm{root.} \, \, \alpha_y(h)$ depneds linearly on h:

$$\alpha_y: g_0 \to \mathbb{C} \quad (\text{linear map})$$

 $\Rightarrow \alpha_y \in \mathfrak{g}^*$ (the dual space to $\mathfrak{g}_0 \equiv$ the set of all linear maps from \mathfrak{g}_0 to \mathbb{C}). $(\alpha^{(j)})^i, h = h_i H^i$ where H^i is the basis.

$$\mathfrak{g} = \mathfrak{g}_0 \oplus \left(\underbrace{\oplus_{\alpha \neq 0}}_{\text{roots}} \mathfrak{g}_\alpha \right)$$

 \mathfrak{g}_0 - Cartan - r-degenerated. \mathfrak{g}_{α} — elements in \mathfrak{g} associated with root α (non-degenerated). Root system = {all roots $(\alpha \neq 0)$ } = $\Phi = \Phi(\mathfrak{g})$ Cartan–Weyl basis

$$\mathcal{B} = \{H^i: i = 1, \dots, r\} \cup \{E^\alpha: \alpha \in \Phi\}$$

with

$$[H^i,H^j] = 0, \quad [H^i,E^\alpha] = \alpha^i E^\alpha, \quad [E^\alpha,E^\beta] = e_{\alpha+\beta} E^{\alpha+\beta}$$

6.3. Killing form

In $\mathfrak{sl}(2,\mathbb{R})$ we use $T^a = (H, E_+, E_-)$. In the 2-dimensional representation:

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad E_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad E_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$\operatorname{Tr}_{(2)}(T^{a}T^{b}) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix} \begin{array}{c} H \\ E_{+} \\ H & E_{+} & E_{-} \end{array}$$

In the three-dimensional representation:

$$\begin{split} H = & \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}, \quad E_{+} = \sqrt{2} \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad E_{-} = \sqrt{2} \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \\ H^{2} = & \begin{pmatrix} 4 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}, \quad E_{+}^{2} = 2 \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \text{etc} \\ \text{Tr}_{(3)}(T^{a}T^{b}) = 4 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix} \end{split}$$

DEFINITION. Representation independent definition of Killing form. Usae the ad_x . Try:

$$\operatorname{tr}(\operatorname{ad}_{T^a} \circ \operatorname{ad}_{T^b}) = ?$$

To get the relevant matrix let it act on some T^c :

$$\mathrm{ad}_{T^{a}} \circ \underbrace{\mathrm{ad}_{T^{b}}(T^{c})}_{f^{b^{c}}d^{T^{d}}} = \underbrace{f^{b^{c}}d^{f^{ad}}f^{ad}}_{(M^{a^{b})^{c}}e} e^{T^{e}}$$

$$\operatorname{Tr}(\operatorname{ad}_{T^a} \circ \operatorname{ad}_{T^b}) = \operatorname{Tr} M^{ab} = (M^{ab})^c {}_c = f^{bc} {}_d f^{ad} {}_c$$

For $\mathfrak{sl}(2)$

$$\begin{cases} [H,H] = 0\\ [H,E_{\pm}] = \pm 2E_{\pm}\\ [E_{+},E_{-}] = H \end{cases} \begin{cases} f^{hh}{}_{a} = 0\\ f^{h\pm}{}_{\pm} = 2\\ f^{+-}{}_{\pm} = 0\\ f^{+-}{}_{H} = 1 \end{cases}$$

$$Tr(ad_{H} \circ ad_{H}) = f^{Ha}{}_{b}f^{Hb}{}_{a} = 8$$
$$Tr(ad_{E_{+}} \circ ad_{E_{-}}) = f^{+a}{}_{b}f^{-b}{}_{a} = 4$$
$$Tr(ad_{T^{a}} \circ ad_{T^{b}}) = 4 \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

4: index for ad. The matrix is the Killing form.

Recall for the 2-dimensional we found exactly

$$\left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{array}\right)$$

i.e. its index = 1.

Metric on ${\mathfrak g}.$ In general

$$\kappa^{ab} \!=\! \left(\begin{array}{cc} \kappa^{ij} & 0 \\ 0 & \text{root part} \end{array} \right)$$

Properties: κ is *invariant* under the \mathfrak{g} .

$$\kappa(x,y){:}\,\kappa([x,y],z)\,{=}\,\kappa(x,[y,z])$$

Proof: EXERCISE! Write out the two sides in terms of ad's and use the trace.

6.4. Properties of roots and root systems

Roots span \mathfrak{g}_0^*

Each root space \mathfrak{g}_{α} is *r*-dimensional

For each α only $\pm \alpha$ are roots. (i.e. 2α is never a root! $[E^{\alpha}, E^{\alpha}] = 0$)

 α^i are all real numbers! In fact: integers (see construction of $\mathfrak{sl}(3)$ from two $\mathfrak{sl}(2)$'s).

6.5. Structure of the Cartan–Weyl basis

So far:

$$\begin{split} [H^i,H^j] = 0, \quad i=1,\dots,r \\ [H^i,E^\alpha] = \alpha^i E^\alpha, \quad \alpha \in \Phi \end{split}$$

 $\Rightarrow [H^i, [E^{\alpha}, E^{\beta}]] = [\text{Jacobi}] = (\alpha^i + \beta^i)[E^{\alpha}, E^{\beta}]$

Three cases for $\alpha^i + \beta^i$:

1) if
$$\alpha^{i} + \beta^{j} \neq 0 \Rightarrow [E^{\alpha}, E^{\beta}] \sim E^{\alpha+\beta}$$
 i.e. $[E^{\alpha}, E^{\beta}] = e_{\alpha,\beta} E^{\alpha+\beta} \Rightarrow \alpha + \beta \in \Phi.$
2) if $\alpha^{i} + \beta^{i} = 0 \Rightarrow [E^{\alpha}, E^{-\alpha}] = \sum_{i=1}^{r} \hat{\alpha}_{i} H^{i} \in \mathfrak{g}_{0}$
3) $[E^{\alpha}, E^{\beta}] = 0 \Rightarrow \alpha + \beta \notin \Phi.$

Freedom left to use: $e_{\alpha,\beta}$ and $\hat{\alpha}_i$ not specified and basis in \mathfrak{g}_0 not chosen.

Note: these choices will affect the Killing form.

In terms of f^{ab}_{c} :

$$\begin{array}{cccc} \mathfrak{g} & \mathfrak{g}_{0} & \Phi \\ \downarrow & \downarrow & \downarrow \\ a &= & (i, \ \alpha) \end{array} \\ f^{ij}{}_{k} = 0, \quad f^{i\alpha}{}_{\beta} = \alpha^{i} \delta^{\alpha}{}_{\beta} \\ f^{\alpha\beta}{}_{i} = \hat{\alpha}_{i} \delta_{\alpha, -\beta}, \quad f^{\alpha i}{}_{j} = 0 \\ f^{a\beta}{}_{\gamma} = \begin{cases} e_{\alpha, \beta} \delta_{\alpha + \beta, \gamma} & \text{if } \alpha + \beta \in \Phi \\ 0 & \text{if } \alpha + \beta \notin \Phi \end{cases} \end{cases}$$

Note:

$$\kappa^{ij} \!\sim\! \sum_{a,b} f^{ia}{}_{b} f^{jb}{}_{a} \!=\! \sum_{\alpha,\beta} f^{i\alpha}{}_{\beta} f^{j\beta}{}_{\alpha} \!=\! \sum_{\alpha} \alpha^{i} \alpha^{j}$$

Exercise: Check that this gives the right answer.

6.6. Positive roots

Split \mathfrak{g} as

$$\mathfrak{g} = \mathfrak{g}_+ \oplus \mathfrak{g}_0 \oplus g_-$$

Gauss decomposition, or triangular decomposition. \mathfrak{g}_+ positive roots, \mathfrak{g}_- negative roots.

6.7. Simple roots

Simple roots is a set of positive (r of them) such that

- they are positive
- all other positive roots are linear combinations with non-negative (integer) coefficients.

Note: if $\alpha^{(i)}$ and $\alpha^{(j)}$ $(j \neq i)$ are simple, then $\alpha^{(i)} - \alpha^{(j)}$ is never a root (can't be a negative root, can't be a positive root).

6.8. Chevalley basis

Start from the completely general algebra in Cartan–Weyl basis

$$\begin{bmatrix} H^{i}, E^{j}_{\pm} \end{bmatrix} = \pm \left(\alpha^{(j)} \right)^{i} E^{j}_{\pm}$$
$$\operatorname{tr}(H^{i}H^{j}) = \kappa^{ij}$$
$$\alpha^{(i)} \cdot \alpha^{(j)} = G^{ij}$$
$$\uparrow_{\kappa}$$

To go from here we can define coroots

$$\check{\alpha}^{(i)} \equiv \frac{\alpha^{(i)}}{C^{(i)}}$$

where $C^{(i)}$ is some number.

Tus we have the possibility to define coroots all of the same length (not the case for the roots). Also, from $\check{\alpha}$ we can define its dual vector space, the weight space.

So $\check{\alpha}^{(i)} \cdot \check{\alpha}^{(j)} = \check{G}^{ij}, \Lambda_{(i)} \cdot \check{\alpha}^{(j)} = \delta^{i}{}_{j}, \Lambda_{(i)} \cdot \Lambda_{(j)} = \check{G}^{-1}_{ij}$ and $\check{\alpha}^{(i)} = \check{G}^{ij} \Lambda_{(j)}$. All using the natural metric κ^{ij} .

Now we can always use a basis where $(\check{\alpha}^{(i)})^j$ and $(\kappa^{-1})_{ij}$ are determined by \check{G}^{ij} !

$$\begin{cases} (\check{\alpha}^{(i)})^j = \check{G}^{ij} \\ (\kappa^{-1})_{ij} = (\check{G}^{-1})_{ij} \end{cases}$$

Then

$$\check{\alpha}^{(i)} \cdot \check{\alpha}^{(j)} = \check{G}^{ij}$$

$$\overset{\uparrow}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}}{\overset{\kappa^{-1}}}}}}}}}}}}}}}}}}}}}}}}}}}}$$

How is this done? i.e. relating $\check{\alpha}$ to κ ?

Define $H^{(i)} \equiv H^j \kappa_{jk} (\check{\alpha}^{(i)})^k$. But then

$$\operatorname{tr} H^{(i)} H^{(j)} = \underbrace{\operatorname{tr} H^k H^l}_{\kappa^{kl}} \cdot \kappa_{km}^{-1} (\check{\alpha}^{(i)})^m \kappa_{ln}^{-1} (\check{\alpha}^{(j)})^n =$$
$$= \check{\alpha}^{(i)} \cdot \check{\alpha}^{(j)} = \check{G}^{ij}$$
$$\stackrel{\uparrow}{\kappa}$$

Next step:

$$\left[H^{(i)}, E^{j}_{\pm} \right] = \pm \left(\alpha^{(j)} \right)^{(i)} E^{j}_{\pm}$$

where

$$\left(\boldsymbol{\alpha}^{(j)} \right)^{(i)} \!=\! \left(\boldsymbol{\alpha}^{(j)} \right)^m \! \kappa_{mn}^{-1} \left(\check{\boldsymbol{\alpha}}^{(i)} \right)^n \!=\! \boldsymbol{\alpha}^{(j)} \cdot \check{\boldsymbol{\alpha}}^{(i)}$$

Next: Define the Cartan matrix

$$A^{ji} \!=\! \alpha^{(j)} \!\cdot \!\check{\alpha}^{(i)}$$

Finally, choose C_{α} so that the $A^{ii} = 2$ for all i.

$$\check{\alpha}^{(i)} = \frac{2\,\alpha^{(i)}}{\alpha^{(i)} \cdot \alpha^{(i)}}$$