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Chapter 6: General theory of Lie algebras and their representations.

The goal is to turn the results obtained for sl(2) and sl(3) into a general theory and find the general
classification (finite dimensional Lie algebras).

Definition. Lie algebra g

1) is a vector space whose elements are called generators of g,

2) ∃ a bilinear product called the Lie product such that [x, x] = 0∀x∈ g.

3) Jacobi idientity.

In a basis T a of the Lie algebra g:

[T a, T b] = fab
cT

c, a, b, c=1,	 , dim g

fab
c are called structure constants.

Example. Adjoint representation adx acts with the Lie bracket [x, · ] on the representation space
(module) which in this case is g itself:

adx · y= [x, y]

⇒(T a)b c=−fab
c

Exercise: Check this.

Definition. g is abelian iff [x, y] = 0∀x, y ∈ g.

Definition. g is simple iff g has no (proper) invariant subalgebras (no proper ideals).

Definition. g is semi-simpole iff g=
∑

i
⊕gi where all gi are simple.

Vector spaces V

Definition. Elements are called vectors . There exist addition and multiplication by scalar. For
scalars α∈F and vectors v ∈ V we have distributivity:

1) α(v1+ v2)=αv1+αv2

2) (α+ β) v=α v+ β v

Definition. The span (or hull). Given a subset of vectors M , SpanF(M) is a vector subspace of
all linear combinations of these vectors.

Definition. A basis B is a subset of vectors in SpanF(M) that span the whole subspace and is
linear independent.

Definition. d= dimFV = |B|.
Definition. Direct sum V1⊕V2 of vector spaces is such that

1) α(v1⊕ v2)=αv1⊕ v2

2) (v1⊕ v2)+ (w1⊕w2)= (v1+w1)⊕ (v2+w2).

If B1= {v̂i} and B2= {ŵi}, then a basis in V1⊕V2 is

B= {v̂i⊕ 0}∪ {0⊕ ŵa}

|B|= |B1|+ |B2|

d= d1+ d2
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Example. A vector inD dimensions can be decomposed into vectors in two subspaces (d=d1+d2).

AM =(Aµ, Am)

Example. What about the metric?

gMN =

(

gµν gµn

gmν gmn

)

Which vector space are gmν and gµn in? One index belongs to V1, one index belongs to V2. gµν:
V1⊗V2.

First . Cartesian (or Kronecker) product

V1×V2= {(v1, v2): v1∈ V1, v2∈ V2}

Ordered pairs.

gµn has properties α(gµn+ gµn
′ )=α gµn+α gµn

′ ,(α+ β)gµn=αgµn+ β gµn ⇒ gµn∈V1⊗V2.

So ⊗ is obtained from × by demanding that (ξ v1, v2) is identified with (v1, ξv2) since this eliminates
(0, v2) and (v1, 0).

Lie algebras: The Cartan–Weyl basis.

• Gives the mathematical foundation for further analysis of Lie algebras.

• A step towards the classification.

• Later: general analysis of Lie algebras: Levi’s theorem.

Goal is to understand why, and if, one can always formulate all properties of a simple Lie algebra
in terms of only Aij, the Cartan matrix.

Recall sl(3):

1)

[

Hi, E±

j
]

=±AjiE±

j

Aji≡
(

α(j)
)

i

2)

α(i) ·α(j)=Aij , Gij=Aij

3)

tr(HiH j)=Aij

Killing form κij.

Also in fact (4) [E+
1 , [E+

1 , E+
2 ]] = 0, i.e.

(

adE+
1

)

1−A21

E+
2P =0. Serre relation.

6.1. Cartan subalgebras.

We will describe Lie algebras by using different bases:

1) a general one is Cartan–Weyl.

2) at the oend of the day we define Chevalley basis.
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The first step will be to identify the Cartan algebra g0.

g0≡ SpanC{Hi: i=1,	 , r} (r= rank)

such that r is the maximal number of commuting elements in g: [Hi, H j] = 0∀i, j.
⇒All elements Hi in g0 are simultaneously diagonalizable, i.e.

[

x�
∈g0

, T̃
a�

g not in g0

]

= fxa
bT̃

b= fx δa bT̃
b

secular equation

det ((fx)a b−fx δa b)= 0

For this equation to have d solutions, which means that we must allow for complex numbers.

6.2. Roots (Note: we don’t assume any relation between
(

α(j)
)

i and Aji here.)

The previous relation is often written

[h, y] =αy(h) y

h∈ g0, y ∈ g. αy(h)= root. αy(h) depneds linearly on h:

αy: g0→C (linearmap)

⇒αy∈ g∗ (the dual space to g0 ≡ the set of all linear maps from g0 to C).

(

α(j)
)

i, h= hiH
i where Hi is the basis.

g= g0⊕
(

⊕α� 0�
roots

gα

)

g0 – Cartan – r-degenerated. gα — elements in g associated with root α (non-degenerated).

Root system = {all roots (α� 0)} =Φ=Φ(g)

Cartan–Weyl basis

B= {Hi: i=1,	 , r}∪ {Eα:α∈Φ}

with

[Hi, H j] = 0, [H i, Eα] =αiEα, [Eα, Eβ] = eα+βE
α+β

6.3. Killing form

In sl(2,R) we use T a=(H,E+, E−). In the 2-dimensional representation:

H =

(

1 0
0 −1

)

, E+=

(

0 1
0 0

)

, E−=

(

0 0
1 0

)

Tr(2)(T
aT b)=





2 0 0
0 0 1
1 0 0





H
E+

E−

H E+ E−
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In the three-dimensional representation:

H =





2 0 0
0 0 0
0 0 −2



, E+= 2
√




0 1 0
0 0 1
0 0 0



, E−= 2
√




0 0 0
1 0 0
0 1 0





H2=





4 0 0
0 0 0
0 0 4



, E+
2 =2





0 0 1
0 0 0
0 0 0



, etc

Tr(3)(T
aT b)= 4





2 0 0
0 0 1
0 1 0





Definition. Representation independent definition of Killing form.

Usae the adx. Try:

tr(adTa ◦ adT b)= ?

To get the relevant matrix let it act on some T c:

adTa ◦ adT b(T c)�
fbc

dTd

= f bc
d f

ad
e�

(Mab)c e

T e

Tr(adTa ◦ adT b)=TrMab=(Mab)c c=f bc
df

ad
c

For sl(2)







[H,H ] = 0
[H,E±] =±2E±

[E+, E−] =H



















fhh
a=0

fh±
±=2

f+−
±=0

f+−
H=1

Tr(adH ◦ adH)= fHa
bf

Hb
a=8

Tr(adE+
◦ adE

−

)= f+a
bf

−b
a=4

Tr(adT a ◦ adT b)= 4





2 0 0
0 0 1
0 1 0





4: index for ad. The matrix is the Killing form.

Recall for the 2-dimensional we found exactly





2 0 0
0 0 1
0 1 0





i.e. its index = 1.

Metric on g. In general

κab=

(

κij 0
0 root part

)
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Properties: κ is invariant under the g.

κ(x, y):κ([x, y], z) =κ(x, [y, z])

Proof: Exercise! Write out the two sides in terms of ad’s and use the trace.

6.4. Properties of roots and root systems

Roots span g0
∗

Each root space gα is r-dimensional

For each α only ±α are roots. (i.e. 2α is never a root! [Eα, Eα] = 0)

αi are all real numbers! In fact: integers (see construction of sl(3) from two sl(2)’s).

6.5. Structure of the Cartan–Weyl basis

So far:

[Hi, H j] = 0. i=1,	 , r

[Hi, Eα] =αiEα, α∈Φ

⇒[Hi, [Eα, Eβ]] = [Jacobi] = (αi+ βi)[Eα, Eβ]

Three cases for αi+ βi:

1) if αi+ βj � 0⇒ [Eα, Eβ]∼Eα+β i.e. [Eα, Eβ] = eα,βE
α+β⇒α+ β ∈Φ.

2) if αi+ βi=0⇒ [Eα, E−α] =
∑

i=1
r

α̂iH
i∈ g0

3) [Eα, Eβ] = 0⇒α+ β � Φ.

Freedom left to use: eα,β and α̂i not specified and basis in g0 not chosen.

Note: these choices will affect the Killing form.

In terms of fab
c:

g g0 Φ
↓ ↓ ↓
a = (i, α)

f ij
k=0, f iα

β=αi δα β

fαβ
i=α̂iδα,−β , fαi

j=0

faβ
γ=

{

eα,β δα+β,γ if α+ β ∈Φ
0 if α+ β � Φ

Note:

κij∼
∑

a,b

f ia
bf

jb
a=
∑

α,β

f iα
βf

jβ
α=
∑

α

αiαj

Exercise: Check that this gives the right answer.

6.6. Positive roots

Split g as

g= g+⊕ g0⊕ g−
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Gauss decomposition, or triangular decomposition. g+ positive roots, g− negative roots.

6.7. Simple roots

Simple roots is a set of positive (r of them) such that

• they are positive

• all other positive roots are linear combinations with non-negative (integer) coefficients.

Note: if α(i) and α(j) (j � i) are simple, then α(i)−α(j) is never a root (can’t be a negative root,
can’t be a positive root).

6.8. Chevalley basis

Start from the completely general algebra in Cartan–Weyl basis

[

Hi, E±

j
]

=±
(

α(j)
)

iE±

j

tr(HiH j) =κij

α(i) · α(j)=Gij

↑
κ

To go from here we can define coroots

α̌(i)≡ α(i)

C(i)

where C(i) is some number.

Tus we have the possibility to define coroots all of the same length (not the case for the roots).
Also, from α̌ we can define its dual vector space, the weight space.

So α̌(i) ·α̌(j)= Ǧij, Λ(i) · α̌(j)=δi j ,Λ(i) ·Λ(j)= Ǧij
−1 and α̌(i)= Ǧij Λ(j). All using the natural metric

κij.

Now we can always use a basis where
(

α̌(i)
)

j and (κ−1)ij are determined by Ǧij!

{

(

α̌(i)
)

j= Ǧij

(κ−1)ij=(Ǧ−1)ij

Then

α̌(i) · α̌(j)= Ǧij

↑
κ−1

How is this done? i.e. relating α̌ to κ?

Define H(i)≡H jκjk

(

α̌(i)
)

k. But then

trH(i)H(j)= trHkH l�
κkl

·κkm
−1
(

α̌(i)
)m

κln
−1
(

α̌(j)
)n

=

=α̌(i) · α̌(j)= Ǧij

↑
κ
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Next step:

[

H(i), E±

j
]

=±
(

α(j)
)

(i)E±

j

where

(

α(j)
)

(i)=
(

α(j)
)m

κmn
−1
(

α̌(i)
)n

=α(j) · α̌(i)

Next: Define the Cartan matrix

Aji=α(j) · α̌(i)

Finally, choose Cα so that the Aii=2 for all i.

α̌(i)=
2α(i)

α(i) ·α(i)
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