
Group theory 2012-03-21 Lecturer: Bengt Nilsson

Recall:

Put together two sl(2,R)’s to get an even larger algebra:

[

Hi, E±
j
]

= AjiE±
j

i, j=1, 2

[E±
1 , E±

2 ] = E±
θ

[

E±
i , E∓

j
]

= δijH j

So with A=
(

2 0
0 2

)

then the new g= sl(2,R)⊕ sl(2,R) (dim=6).

A is called the Cartan matrix. For other such A’s we have:

(

2 −1
−1 2

)

⇒ g= sl(3,R) : A2 dim=8=6+2
(

2 −2
−1 2

)

⇒ g= so(5) : B2

(

2 −3
−1 2

)

⇒ g=− : G2

The last one is not a matrix Lie algebra.

In the Cartan matrix the first row is a vector α̃(1) and the second row α̃(2).

We used the metric Gij = Tr(HiH j) =
(

2 −1
−1 2

)

= A, to be able to draw the root diagram in a

symmetric fashion. We diagonalised this metric to be able to draw the diagram in an orthonormal
basis.

In an orthonormal basis we found

α̃(1) = 2
√ (

1
0

)

α̃(2) =
1

2
√
(

−1
3
√

)

Figure 1.

α̃(i) · α̃(j) = Aij
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The ±α̃(i), i=1, 2, 3 are called the roots of A2. Here A2 refers to all of sl(3,R), SU(3), sl(3,C).

The diagram above is called a root diagram.

B2

Now we drop the ˜!

Figure 2.

All the roots are =pα(1)+ qα(2).

Note that the Cartan matrix here

A =

(

2 −2
−1 2

)

Is not symmetric, so α(1) and α(2) does not have the same length.

Cartan classification

Classical matrix algebras

An sl()

Bn so(odd)

Cn sp()

Dn so(even)

Exceptional

G2

F4

E6

E7

E8
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All these have detA> 0⇔finite dimensional Lie algebras.

det (A)= 0 ⇔ infinite-dimensional.

det (A)< 0 ⇔Kac-Moody,Hyperbolic,Lorentzian etc.

If A is different type from above we have for example Bocherd,	 ..

G2

Figure 3.

A =

(

2 −3
−1 2

)

Representations of A2

Before looking at the general theory we discuss tensors from indices:

Two topics:

1. Tensor products

2. Decompositions

1) Tensor products

In physics e.g. elem. part. transform according to some representations of SU(3)×SU(2)×U(1).

quarks 3 of SU(3)
antiquarks 3̄ of SU(3)
gluons 8 of SU(3)
hadrons 8, 10,	 of SU(3)

The 8 above is related to the root diagram.
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One thing many does now is looking at SU(N) where N→∞, called the
1

N
expansion.

Figure 4.

Exercise in indices:

SO(3): The invariant tensors are δij , εijk.

Tij → Tij
′ = gikgjlTkl

δij → δij
′ = gikgjlδkl

= (ggT )ij
= δij

Where the last step is by definition of SO(N), they are matrices such that ggT = I.

Infinitesimal (i.e. in the Lie algebra so(3)):

δ(Tij) = gikgjlTkl−Tij

if we now expand g= eα
iΛi

, we get

δ(Tij) = αi(Λi)ikTkj+αi(Λi)jkTik

We have generators g=−εijk.

Exercise 1. Show that ε
ijk is an inv tensor of the Lie algebra!

Now repr 3 of SO(3): Ti, this is just a vector.

Now we can take the tensor product 3⊗ 3:Tij

From QM we know 3⊗ 3= 5⊕ 3⊕ 1.

Tij = T[ij]+T(ij)+ δijTkk

Where the first term is antisymmetrisation, the second is symmetrisation with trace removed, and
the third term is the trace.

For a three index tensor Tijk

Tijk = T[ijk]+	
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But now [ijk] is not irreducible because we have the invariant εijk. But already here it starts to
get hairy! We need Young tableux etc but with finite group theory knowledge it gets easier.

sl(3,R)(or SU(3))

Invariant tensor is just εijk.

Ti ⇒ Tij=T[ij]+T(ij)

Here we cannot remove the trace since δ is not an invariant!

T[ij] = εijkT
k ← repr 3̄

Which gives us

3⊗ 3 = 3̄⊗ 6

Also we have Ti
j which corresponds to 3⊗ 3̄ = 8⊕ 1:

Ti
j = δi

jT + T̃i
j

Here we have a δ since this just corresponds to the.

Decomposition

Can we decompose representations under sl(3,R) to representations under the subgroup sl(2,R)?

Example: 3 of sl(3,R)





sl(2,R) 0
0

0 0 .









α

β

γ





So we have 3→ 2⊕ 1.

Indices:

Ti : i=1, 2, 3= (a, 3), a=1, 2

Ti → Ta⊕T3

Ex:

Ti
j = Ta

b⊕Ta
3⊕T3

b⊕T3
3

3⊗ 3̄ = 2⊗ 2̄ + 2+ 2̄+1

= 3+1+2+ 2̄+1

Note 1. sl(2,R) is special since 2 and 2̄ are equivalent! (From sl(2,R)D sp(2,R) with has εab as
inv tensor. ) The 2 is called pseudo-real.

Can we find general methods to deal with representations?

Go back to sl(2,R):

Possible highest weight representations: Λ=0, 1, 2,	 , ⇒dim=Λ+1, with Λ=N ∈Z(=2j inQM).
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Algebra:

[E+, E−] = H

[H,E±] = ±2E±

The 2 above is the Cartan matrix A=2! So we have just one one-dimensional root α!

α = 2

A = 2

butA = α ·α
(

sinceα(i) ·α(j)=Aij
)

But 2 × 2 = 4 which is wrong, we need to go to the orthonormal basis! I.e. the metric must be

G−1=
1

2
, so that we have

α ·α =
1

2
2× 2

Because we have that G=TrHH =2.

To get to the orthonormal basis and draw things:

α̃ =
1

2
√ α

H̃ =
1

2
√ H

⇒
α̃ · α̃ = 2 with G̃=1

• Root space

Figure 5.

• Root lattice

{v |mα̃,m∈Z}

Figure 6.
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• Weight lattice, dual of the root lattice

Spanned by a vector Λ̃ s.t. Λ̃ · α̃=1. (Where the product is just the natural product between
vectors and covectors).

α̃ = 2
√

Λ̃ =
1

2
√

Figure 7.

• Weight spaces.

Ex Λ=5� d=6.

Figure 8.

Note 2. Here we view the root vectors as states in the adjoint representation so that E±

can act on them. The generators H, E+, E− span a 3-dimensional vector space which is a
representation of sl(2, R) with HWS=E+ and LWS=E−. The algebra of sl(2, R) acts on
this vectorspace by the commutator. This action is usually denoted by adx(y)≡ [x, y].

adE+
(E−) = [E+, E−]

= H

adE+
(H) = [E+, H ]

= 2E+

adE+
(E+) = [E+, E+]

= 0

Thus E+ steps through the three states in the representation and E+ itself is the highest
weight state as promised.
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A2

A =

(

2 −1
−1 2

)

α(1) = 2
√ (

1
0

)

α(2) =
1

2
√
(

−1
3
√

)

The weight lattice is the dual lattice spanned by Λ(1) and Λ(2) s.t.

Λ(i) ·α(j) = δi
j

⇒

Λ(1) =
1

2
√
(

1,
1

3
√

)

Λ(2) =
1

2
√
(

0,
2

3
√

)

|Λ(i)|2 =
2

3

All of the above is in the orthonormal basis.

Figure 9.

Note

volume (root)

volume (weight)
= 3=Number of conjugacy classes

Definition 3.

Root lattice =
{

m1α
(1)+m2α

(2),m1,m2∈Z
}

Weight lattice =
{

n1Λ̃(1)+n2Λ̃(2), n
1, n2∈Z

}

Definition 4.
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HWS

Λ =
∑

niΛ(i) withni> 0

s.t.

E+
i vΛ = 0

HvΛ = ΛvΛ
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