Group theory 2012-03-21

Lecturer: Bengt Nilsson

Recall:

Put together two sl(2, \mathbb{R})'s to get an even larger algebra:

$$\begin{array}{lll} \left[\begin{array}{ccc} H^{i}, E^{j}_{\pm} \end{array} \right] &=& A^{ji} E^{j}_{\pm} & i, j = 1, 2 \\ \left[E^{1}_{\pm}, E^{2}_{\pm} \right] &=& E^{\theta}_{\pm} \\ \left[\begin{array}{ccc} E^{i}_{\pm}, E^{j}_{\pm} \end{array} \right] &=& \delta^{ij} H^{j} \end{array}$$

So with $A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ then the new $g = sl(2, \mathbb{R}) \oplus sl(2, \mathbb{R})$ (dim=6).

 ${\cal A}$ is called the Cartan matrix. For other such ${\cal A}$'s we have:

$$\begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \Rightarrow g = \operatorname{sl}(3, \mathbb{R}) : A_2 \quad \dim = 8 = 6 + 2$$

$$\begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix} \Rightarrow g = \operatorname{so}(5) : B_2$$

$$\begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix} \Rightarrow g = - : G_2$$

The last one is not a matrix Lie algebra.

In the Cartan matrix the first row is a vector $\tilde{\alpha}^{(1)}$ and the second row $\tilde{\alpha}^{(2)}$.

We used the metric $G^{ij} = \text{Tr}(H^i H^j) = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = A$, to be able to draw the root diagram in a symmetric fashion. We diagonalised this metric to be able to draw the diagram in an orthonormal basis.

In an orthonormal basis we found

$$\tilde{\alpha}^{(1)} = \sqrt{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\tilde{\alpha}^{(2)} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix}$$

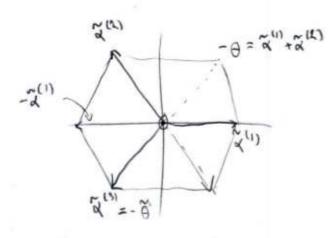


Figure 1.

$$\tilde{\alpha}^{(i)} \cdot \tilde{\alpha}^{(j)} = A^{ij}$$

The $\pm \tilde{\alpha}^{(i)}$, i = 1, 2, 3 are called the **roots** of A_2 . Here A_2 refers to all of $sl(3, \mathbb{R})$, SU(3), $sl(3, \mathbb{C})$. The diagram above is called a **root diagram**.

B_2

Now we drop the $\tilde{}^!$

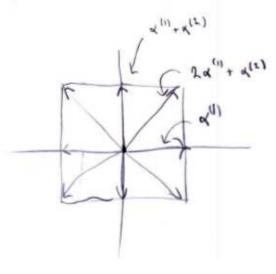


Figure 2.

All the roots are $=p\alpha^{(1)} + q\alpha^{(2)}$.

Note that the Cartan matrix here

$$A = \left(\begin{array}{cc} 2 & -2 \\ -1 & 2 \end{array}\right)$$

Is not symmetric, so $\alpha^{(1)}$ and $\alpha^{(2)}$ does not have the same length.

Cartan classification

Classical matrix algebras

$$\begin{array}{ll} A_n & \mathrm{sl}() \\ B_n & \mathrm{so}(\mathrm{odd}) \\ C_n & \mathrm{sp}() \\ D_n & \mathrm{so}(\mathrm{even}) \end{array}$$

Exceptional

$$G_2$$

 F_4
 E_6
 E_7
 E_8

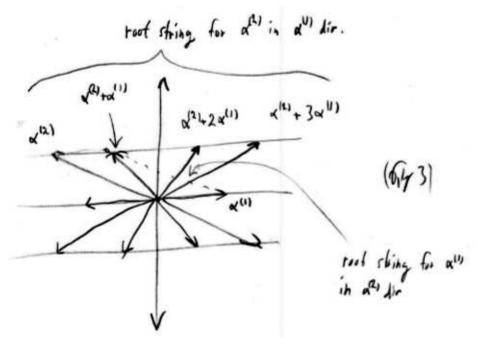
All these have $\det A > 0 \Leftrightarrow \text{finite dimensional Lie algebras}$.

 $det(A) = 0 \iff infinite-dimensional.$

 $\det(A) < 0 \quad \Leftrightarrow \text{Kac-Moody,Hyperbolic,Lorentzian etc.}$

If A is different type from above we have for example Bocherd,

 G_2



$$A = \left(\begin{array}{cc} 2 & -3 \\ -1 & 2 \end{array}\right)$$

Representations of A_2

Before looking at the general theory we discuss *tensors from indices*:

Two topics:

- 1. Tensor products
- 2. Decompositions

1) Tensor products

In physics e.g. elem. part. transform according to some representations of $SU(3) \times SU(2) \times U(1)$.

quarks	3	of $SU(3)$
antiquarks	$\overline{3}$	of $SU(3)$
gluons	8	of $SU(3)$
hadrons	8, 10,	of $SU(3)$

The 8 above is related to the root diagram.

One thing many does now is looking at SU(N) where $N \to \infty$, called the $\frac{1}{N}$ expansion.

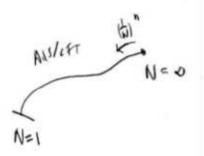


Figure 4.

Exercise in indices:

SO(3): The invariant tensors are $\delta_{ij}, \varepsilon_{ijk}$.

$$\begin{array}{rcl} T_{ij} & \rightarrow & T_{ij}' = g_{ik}g_{jl}T_{kl} \\ \delta_{ij} & \rightarrow & \delta_{ij}' = g_{ik}g_{jl}\delta_{kl} \\ & = & (gg^T)_{ij} \\ & = & \delta_{ij} \end{array}$$

Where the last step is by definition of SO(N), they are matrices such that $gg^T = I$. Infinitesimal (i.e. in the Lie algebra so(3)):

$$\delta(T_{ij}) = g_{ik}g_{jl}T_{kl} - T_{ij}$$

if we now expand $g = e^{\alpha^i \Lambda^i}$, we get

$$\delta(T_{ij}) = \alpha^{i} (\Lambda^{i})_{ik} T_{kj} + \alpha^{i} (\Lambda^{i})_{jk} T_{ik}$$

We have generators $g = -\varepsilon^{ijk}$.

Exercise 1. Show that ε^{ijk} is an inv tensor of the Lie algebra!

Now repr 3 of SO(3): T_i , this is just a vector.

Now we can take the tensor product $3 \otimes 3$: T_{ij}

From QM we know $3 \otimes 3 = 5 \oplus 3 \oplus 1$.

$$T_{ij} = T_{[ij]} + T_{\widetilde{(ij)}} + \delta_{ij}T_{kk}$$

Where the first term is antisymmetrisation, the second is symmetrisation with trace removed, and the third term is the trace.

For a three index tensor T_{ijk}

$$T_{ijk} = T_{[ijk]} + \dots$$

But now [ijk] is not irreducible because we have the invariant ε_{ijk} . But already here it starts to get hairy! We need Young tableux etc but with finite group theory knowledge it gets easier.

 $sl(3, \mathbb{R})(or SU(3))$

Invariant tensor is just ε^{ijk} .

$$T_i \Rightarrow T_{ij} = T_{[ij]} + T_{(ij)}$$

Here we cannot remove the trace since δ is not an invariant!

$$T_{[ij]} = \varepsilon_{ijk} T^k \quad \leftarrow \operatorname{repr} \bar{3}$$

Which gives us

$$3 \otimes 3 = \overline{3} \otimes 6$$

Also we have T_i^{j} which corresponds to $3 \otimes \overline{3} = 8 \oplus 1$:

$$T_i{}^j = \delta_i{}^j T + \tilde{T}_i{}^j$$

Here we have a δ since this just corresponds to the.

Decomposition

Can we decompose representations under $sl(3, \mathbb{R})$ to representations under the subgroup $sl(2, \mathbb{R})$? Example: 3 of $sl(3, \mathbb{R})$

$$\left(\begin{array}{cc} \mathrm{sl}(2,\mathbb{R}) & 0\\ & 0\\ 0 & 0 \end{array}\right) \left(\begin{array}{c} \alpha\\ \beta\\ \gamma\end{array}\right)$$

So we have $3 \rightarrow 2 \oplus 1$.

Indices:

$$T_i : i = 1, 2, 3 = (a, 3), a = 1, 2$$

 $T_i \rightarrow T_a \oplus T_3$

Ex:

$$T_i^{j} = T_a^{b} \oplus T_a^{3} \oplus T_3^{b} \oplus T_3^{3}$$

$$3 \otimes \overline{3} = 2 \otimes \overline{2} + 2 + \overline{2} + 1$$

$$= 3 + 1 + 2 + \overline{2} + 1$$

Note 1. $sl(2,\mathbb{R})$ is special since 2 and $\overline{2}$ are equivalent! (From $sl(2,\mathbb{R}) \cong sp(2,\mathbb{R})$ with has ε_{ab} as inv tensor.) The 2 is called pseudo-real.

Can we find general methods to deal with representations?

Go back to $sl(2, \mathbb{R})$:

Possible highest weight representations: $\Lambda = 0, 1, 2, ..., \Rightarrow \dim = \Lambda + 1$, with $\Lambda = N \in \mathbb{Z}(=2j \text{ in QM})$.

Algebra:

$$\begin{array}{rcl} [E_+, E_-] &=& H \\ [H, E_\pm] &=& \pm 2 E_\pm \end{array}$$

The 2 above is the Cartan matrix A = 2! So we have just one one-dimensional root $\alpha!$

$$\begin{aligned} \alpha &= 2 \\ A &= 2 \\ \text{but } A &= \alpha \cdot \alpha \qquad \left(\text{since } \alpha^{(i)} \cdot \alpha^{(j)} = A^{ij} \right) \end{aligned}$$

But $2 \times 2 = 4$ which is wrong, we need to go to the orthonormal basis! I.e. the metric must be $G^{-1} = \frac{1}{2}$, so that we have

$$\alpha \cdot \alpha \ = \ \frac{1}{2} 2 \times 2$$

Because we have that G = TrHH = 2.

To get to the orthonormal basis and draw things:

$$\begin{split} \tilde{\alpha} &= \frac{1}{\sqrt{2}} \alpha \\ \tilde{H} &= \frac{1}{\sqrt{2}} H \\ &\Rightarrow \\ \tilde{\alpha} \cdot \tilde{\alpha} &= 2 \quad \text{with } \tilde{G} = 1 \end{split}$$

• Root space

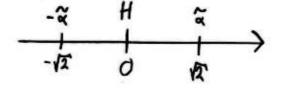


Figure 5.

• Root lattice

$$\{v \mid m \tilde{\alpha}, m \in \mathbb{Z}\}$$

Figure 6.

• Weight lattice, dual of the root lattice

Spanned by a vector $\tilde{\Lambda}$ s.t. $\tilde{\Lambda} \cdot \tilde{\alpha} = 1$. (Where the product is just the natural product between vectors and covectors).

$$\tilde{\alpha} = \sqrt{2} \\ \tilde{\Lambda} = \frac{1}{\sqrt{2}}$$

Figure 7.

• Weight spaces.

 $\mathrm{Ex}\ \Lambda=5\Longrightarrow d=6.$

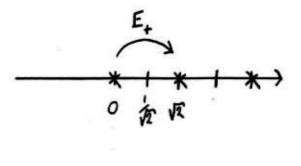


Figure 8.

Note 2. Here we view the root vectors as states in the adjoint representation so that E_{\pm} can act on them. The generators H, E_+, E_- span a 3-dimensional vector space which is a representation of $sl(2, \mathbb{R})$ with $HWS=E_+$ and $LWS=E_-$. The algebra of $sl(2, \mathbb{R})$ acts on this vectorspace by the commutator. This action is usually denoted by $ad_x(y) \equiv [x, y]$.

$$\begin{aligned} \mathrm{ad}_{E_+}(E_-) &= & [E_+, E_-] \\ &= & H \\ \mathrm{ad}_{E_+}(H) &= & [E_+, H] \\ &= & 2E_+ \\ \mathrm{ad}_{E_+}(E_+) &= & [E_+, E_+] \\ &= & 0 \end{aligned}$$

Thus E_+ steps through the three states in the representation and E_+ itself is the highest weight state as promised.

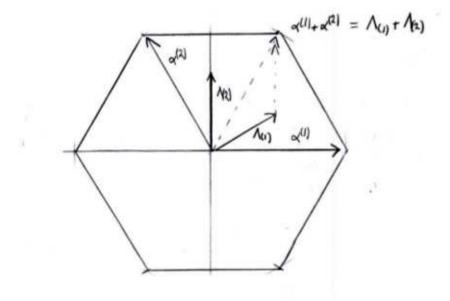
 A_2

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}$$
$$\alpha^{(1)} = \sqrt{2} \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
$$\alpha^{(2)} = \frac{1}{\sqrt{2}} \begin{pmatrix} -1 \\ \sqrt{3} \end{pmatrix}$$

The weight lattice is the dual lattice spanned by $\Lambda_{(1)}$ and $\Lambda_{(2)}$ s.t.

$$\begin{split} \Lambda_{(i)} \cdot \alpha^{(j)} &= \delta_i^{j} \\ \Rightarrow \\ \Lambda_{(1)} &= \frac{1}{\sqrt{2}} \left(1, \frac{1}{\sqrt{3}} \right) \\ \Lambda_{(2)} &= \frac{1}{\sqrt{2}} \left(0, \frac{2}{\sqrt{3}} \right) \\ |\Lambda_{(i)}|^2 &= \frac{2}{3} \end{split}$$

All of the above is in the orthonormal basis.



Note

$$\frac{\text{volume}(\text{root})}{\text{volume}(\text{weight})} = 3 = \text{Number of conjugacy classes}$$

Definition 3.

Root lattice = $\left\{m_1\alpha^{(1)} + m_2\alpha^{(2)}, m_1, m_2 \in \mathbb{Z}\right\}$ Weight lattice = $\left\{n^1\tilde{\Lambda}_{(1)} + n^2\tilde{\Lambda}_{(2)}, n^1, n^2 \in \mathbb{Z}\right\}$

Definition 4.

HWS

$$\Lambda \ = \ \sum \, n^i \Lambda_{(i)} \qquad {\rm with} \, n^i \! \geqslant \! 0$$

s.t.

$$\begin{array}{rcl} E^i_+ v_\Lambda &=& 0 \\ H v_\Lambda &=& \Lambda v_\Lambda \end{array}$$