
2012–03–14 Lecturer: Bengt E W Nilsson

Recall: su(2)∼ sl(2,R)∼ sl(2,C) as complex vector spaces. The representation theory is indepen-
dent of which one we mean, at this point. Unitarity of representations will depend on the choice
of real form .

We will consider

L0=

(

1 0
0 −1

)

, L+=

(

0 1
0 0

)

, L−=

(

0 0
1 0

)

⇒
{

[L+, L−] =L0

[L0, L±] =±2L±

⇒ Representations (i.e. modules) in general are constructed from highest-weight states (HWS) vΛ,
where Λ is the highest weight. They are such that

L+ vΛ=0, L0vΛ=Λ vΛ.

Stepping up gives zero. Step down with L−:

vΛ→L−vΛ= vΛ−2.

Check:

L0(L−vΛ)= [L0, L−]�
=−2L

−

vΛ+L−L0vΛ�
=ΛvΛ

=(Λ− 2)(L−vΛ)

⇒L−vΛ= vΛ−2

(There is a proportionality constant here, that we set to unity.) This repeats:

(L−)
n vΛ≡ vΛ−2n

and this stops after som N steps, i.e.

(L−)
NvΛ= vΛ−2N

and

L−vΛ−2N =0.

This means that you get the picture of a line.

Figure 1.
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d=N +1 states in the representation (this is called the dimension).

Stepping up:

L+ vΛ−2n≡ rn vΛ−2n+2

⇒rn=n(Λ−n+1)

By computing

0=L+L−vΛ−2N

⇒N =Λ or −1, so N =L

It is symmetric about zero. vΛ−2N = v−Λ.

Figure 2. Symmetric about zero.

Comments:

N =2, d=3.

H =





2 0 0
0 0 0
0 0 2





(new notation for L0). This is the Cartan element (of the Cartan subalgebra).

Stepping-down operator:

F =





0 0 0
1 0 0
0 1 0





It is often called E−.

F





1
0
0



=





0
1
0





[H,F ] =−2F

Stepping-up operator:

E =





0 1 0
0 0 1
0 0 0



.
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This is often called E+.

In sl(3,R) we need three upper-triangular matrices! What about





0 0 1
0 0 0
0 0 0



=E+
2

in sl(2,R). So, is (E+)
2 in sl(2,R)?

No, since only commutators are new elements in a Lie algebra, and





0 0 1
0 0 0
0 0 0





is not obtainable like that in sl(2,R). (But it is, of course, in sl(3,R).)

E+
1 ∼





0 1 0
0 0 0
0 0 0



, E+
2 ∼





0 0 0
0 0 1
0 0 0



, E+
3 =





0 0 0
0 0 0
0 0 0





So sl(2,R)≡A1 (Cartan’s classification)

A1: [E+, E−] =H,

[H,E ± ] =±2E±.

The Lie algebra sl(3,R), or A2

Try to combine two sl(2,R)’s into a more complicated algebra, and finally to get sl(3,R).

First sl(2,R):

[E+
1 , E−

1 ] =H1

[H1, E±
1 ] =±2E±

1

To get a second quantum number (which is just an index enumerating the states and eigenvectors),
we need a new element that commutes with H1, which we call H2.

[H1, H2] = 0.

This we call rank 2. The rank is the number of Cartan subalgebras.

If H2 commutes also with E±
1 then nothing interesting happens.

Example:

H2=
∑

i

(Li)
2=C2 ⇒ Li

2|λ〉= j(j+1)|λ〉 where Λ=2 j

To really get something new, H2 must be part of a second sl(2,R):

Second sl(2,R):

[H2, E±
2 ] =±2E±

2

[E+
2 , E−

2 ] =H2
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Now, if all generators in the first sl(2, R) commutes with all in the second one, the new algebra
is “trivial”:

g= sl(2,R)⊕ sl(2,R), dim=6.

All states are labelled by two numbers, the eigenvalues of H1 and H2.

Figure 3.

So, to get an even larger algebra (like sl(3,R), which is dim=8) the two sl(2,R)’s cannot commute:

[

Hi, E±
j
]

=±AjiE±
j .

Note the order of the indices here. Note also that A11 = A22 = 2, from the already established
commutation relations.

To get a mixing between the sl(2,R)’s we need A21 and/or A12 to be non-zero.

Consider the other possible commutators, between the E’s:

[E±
1 , E±

2 ]≡E±
θ (this is just notation, at this point)

[E±
1 , E∓

2 ]

We now would like to relate their eigenvalues of Hi to Aji (if possible).

1)

[Hi, [E±
1 , E±

2 ]] = [Hi, E±
θ ]

[Hi, [E±
1 , E±

2 ]] = [Jacobi] =−[E±
1 , [E±

2 , Hi]]− [E±
2 , [Hi, E±

1 ]] =

=−[E±
1 ,∓A2iE±

2 ]− [E±
2 , [Hi,±A1iE±

1 ]] =

=±(A1i+A2i) [E±
1 , E±

2 ]
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also

[Hi, [E±
1 , E∓

2 ]] =±(A1i−A2i)[E±
1 , E∓

2 ]

Hence: both E±
θ and [E±

1 , E∓
2 ] are possible new elements in the bigger Lie algebra. To find the

smallest extension of sl(2,R)⊕ sl(2,R), we will try to keep E±
θ and set [E±

1 , E∓
2 ] to zero.

So: We assume

(1) [E±
1 , E∓

2 ] = 0 and

(2) [E±, E±
θ ] = 0 and

(3) [E∓
i , E±

θ ]� 0 by Jacobi.

Now compute
[

E+
1 , [E−

1 , E+
2 ]�

=0 by (1)

]

−
[

E−
1 , [E+

1 , E+
2 ]�

E+
θ

]

= [Jacobi] =−
[

E+
2 , [E+

1 , E−
1 ]�

H1

]

=+[H1, E+
2 ] =A21E+

2

We can connect the existence of the opreator E+
θ with A21 being nonzero.

Thus g= sl(2,R)⊕ sl(2,R)⇒A=

(

2 0
0 2

)

Can we get A21? Yes.

0=

[

E−
1 , [E+

1 , E+
θ ]�

=0 by (2)

]

= [Jacobi] =	 =−(2A21 +A11)E+
θ

⇒A21 =−1

also A12 =−1.

Thus we know the Cartan matrix for A1.

A=

(

2 −1
−1 2

)

.

To summarize sl(3,R)

A=

(

2 −1
−1 2

)

⇔











[H1, H2] = 0
[

Hi, E±
j
]

=±AjiE+
j

There are altogether 6 step operators: E±
i , E±

θ

dim (A2)= 8.

Note:

[Hi, E±
θ ] =±(A1i+A2i)E+

θ

Note:

[E±
1 , E±

2 ] =±E±
θ , [E+

θ , E−
θ ] =H1+H2

This means that there’s a third sl(2,R) inside sl(3,R). Exercise!
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The third sl(2,R):

E±
3 ≡Eθ, H3=−(H1+H2).

⇒H1+H2+H3=0

and all three sl(2,R)’s are completely equivalent inside sl(3,R).

In physics the sl(2,R)’s are called (weak) isospin U and V .

Question: How can we make sense of all these sl(3,R) commutators?

Let the Cartan subalgebra (H1, H2)=Hi span a vector space

h= hiH
i

(like writing r= xie
i).

Then
[

Hi, E±
j
]

= ±
(

α(j)
)

iE+
j where α(j) is a vector of eigenvalues for the operator E±

j , i.e.

Aji=
(

α(j)
)

i is the ith component of the eigenvalue vector α(j).

Aji=

(

A11 A12

A12 A22

)�(

α(1)
)

i�(

α(2)
)

i

so for E+
1 we get α(1)=(A11, A12)= (2,−1).

For E+
2 we get α(2)=(A21, A22) = (−1, 2).

For E±
θ we get θ=

(

α(1)+α(2)
)

=(1, 1).

Also E−
i give −α(i) and E−

θ gives −θ.

Standard is to draw these in a root diagram.

Figure 4. The symmetry between the 3 sl(2,R)’s not present.
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What is wrong? Answer: We have assumed something in this picture that is not natural (canonical).

We have introduced the metric
(

1 0
0 1

)

in this picture. But there is a canonical metric:

Recall h= hiH
1 with

H1=





1 0 0
0 −1 0
0 0 0



, H2=





0
1

−1



, H3=





−1
0

1





E+
1 =





0 1 0
0 0 0
0 0 0



, 	
Lie algebras of sl(3,R).

Metric: Gij= tr(Hi, H j)=
(

2 −1
−1 2

)

=Aji again.

⇒h ·h′=hiG
ijhj

α(i) ·α(j)=
(

α(i)
)

k
(

α(j)
)

lGkl

where Gkl is by definition the matrix inverse of Gij.

Gij=
1

3

(

2 1
1 2

)

Compute, with scalar product given by G:

α(i) ·α(j)=

(

2 −1
−1 2

)

=A

To redraw the diagram, we have to diagonalize the metric Gij: Define

H̃ i=

(

1

2
√ H1,

1

6
√ (H1+2H2)

)

=M i
j H

j

G̃ij= tr
(

H̃ iH̃ j
)

=

(

1 0
0 1

)

⇒
[

H̃ i, E±
i
]

=M i
j

(

α(1)
)

jE±
1



























α̃(1)= 2
√ (

1
0

)

α̃(2)=
1

2
√

(

−1

3
√

)

α̃(3)=
1

2
√

(

1

3
√

)

With the scalar product given by δij:

α̃(i) · α̃(j)=

(

2 −1
−1 2

)

=A
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Figure 5.

Note α̃(1)+ α̃(2)+ α̃(3)=0.

Comments:

sl(3,R) contains H1, H2, E±
i , E±

θ

There is a “metric” on the whole vector space. Killing form κab:

κab=











2 −1 0 0
−1 2 0 0

0 0 0 1

0 0 1 0











H1

H2

E+
i

E−
i

Figure 6.

Split form.

Diagonalize κ in the non-Cartan part.

κ=







A 0 0

0 1 0
0 0 −1







In this basis we have H1, H2, E+
i +E−

i , E+
i −E−

i for i=1, 2, 3.
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Note

E+
1 −E−

1 =





0 1 0
−1 0 0
0 0 0





⇒eα(E+
1 −E

−

1 )= cosα+(	 ) sinα ⇒ compact.

while all other e	 give cosh+ sinh⇒ non-compact.

E+ − E− generate the maximal compact subgroup of sl(3, R) and the coset sl(3, R)/so(3) ≈ 5-
dimensional hyperbolic.

Compare sl(2,R)/so(2).

Cartan matrices:

Rank 2:

A=

(

2 −1
−1 2

)

, detA=3, A2 (dim 8)

The off-diagonal elements we could change:

A=

(

2 −2
−1 2

)

, detA=2, B2 (dim 10)

A=

(

2 −3
−1 2

)

, detA=1, G2 (dim 14)

The diagonal is always (2, 2), the off-diagonal elements always negative, the determinant always
possible.
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