2012-03-14

Recall: $\mathfrak{su}(2) \sim \mathfrak{sl}(2, \mathbb{R}) \sim \mathfrak{sl}(2, \mathbb{C})$ as complex vector spaces. The representation theory is independent of which one we mean, at this point. Unitarity of representations *will* depend on the choice of *real form*.

We will consider

$$L_{0} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad L_{+} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad L_{-} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$
$$\Rightarrow \quad \begin{cases} [L_{+}, L_{-}] = L_{0} \\ [L_{0}, L_{\pm}] = \pm 2L_{\pm} \end{cases}$$

 \Rightarrow Representations (i.e. modules) in general are constructed from highest-weight states (HWS) v_{Λ} , where Λ is the highest weight. They are such that

$$L_+ v_\Lambda = 0, \quad L_0 v_\Lambda = \Lambda v_\Lambda.$$

Stepping up gives zero. Step down with L_{-} :

$$v_{\Lambda} \rightarrow L_{-}v_{\Lambda} = v_{\Lambda-2}.$$

Check:

$$L_0(L_-v_\Lambda) = \underbrace{[L_0, L_-]}_{=-2L_-} v_\Lambda + L_- \underbrace{L_0 v_\Lambda}_{=\Lambda v_\Lambda} = (\Lambda - 2)(L_-v_\Lambda)$$
$$\Rightarrow L_-v_\Lambda = v_{\Lambda - 2}$$

(There is a proportionality constant here, that we set to unity.) This repeats:

$$(L_{-})^n v_{\Lambda} \equiv v_{\Lambda-2n}$$

and this stops after som N steps, i.e.

$$(L_{-})^{N} v_{\Lambda} = v_{\Lambda-2N}$$

and

$$L_{-}v_{\Lambda-2N}=0.$$

This means that you get the picture of a line.

Figure 1.

d=N+1 states in the representation (this is called the dimension). Stepping up:

$$L_+ v_{\Lambda-2n} \equiv r_n v_{\Lambda-2n+2}$$
$$\Rightarrow r_n = n(\Lambda - n + 1)$$

By computing

$$0 = L_{+}L_{-}v_{\Lambda-2N}$$
$$\Rightarrow N = \Lambda \text{ or } -1, \quad \text{so} \boxed{N = L}$$

It is symmetric about zero. $v_{\Lambda-2N} = v_{-\Lambda}$.

Figure 2. Symmetric about zero.

Comments:

N = 2, d = 3.

$$H = \left(\begin{array}{rrr} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2 \end{array}\right)$$

(new notation for L_0). This is the Cartan element (of the Cartan subalgebra). Stepping-down operator:

$$F = \begin{pmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
$$F \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$$
$$[H, F] = -2 F$$

It is often called E_{-} .

Stepping-up operator:

$$E = \left(\begin{array}{rrrr} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{array}\right).$$

This is often called E_+ .

In $\mathfrak{sl}(3,\mathbb{R})$ we need three upper-triangular matrices! What about

$$\left(\begin{array}{ccc} 0 & 0 & 1\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{array}\right) = E_+^2$$

in $\mathfrak{sl}(2,\mathbb{R})$. So, is $(E_+)^2$ in $\mathfrak{sl}(2,\mathbb{R})$?

No, since only commutators are new elements in a Lie algebra, and

$$\left(\begin{array}{rrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right)$$

is not obtainable like that in $\mathfrak{sl}(2,\mathbb{R})$. (But it is, of course, in $\mathfrak{sl}(3,\mathbb{R})$.)

$$E_{+}^{1} \sim \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad E_{+}^{2} \sim \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad E_{+}^{3} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

So $\mathfrak{sl}(2,\mathbb{R}) \equiv A_1$ (Cartan's classification)

A₁:
$$[E_+, E_-] = H$$
,
 $[H, E \pm] = \pm 2 E_{\pm}$.

The Lie algebra $\mathfrak{sl}(3,\mathbb{R})$, or A_2

Try to combine two $\mathfrak{sl}(2,\mathbb{R})$'s into a more complicated algebra, and finally to get $\mathfrak{sl}(3,\mathbb{R})$. First $\mathfrak{sl}(2,\mathbb{R})$:

$$\begin{split} [E_{\pm}^{1}, E_{\pm}^{1}] = H^{1} \\ [H^{1}, E_{\pm}^{1}] = \pm 2 \, E_{\pm}^{1} \end{split}$$

To get a second quantum number (which is just an index enumerating the states and eigenvectors), we need a new element that commutes with H^1 , which we call H^2 .

$$[H^1, H^2] = 0.$$

This we call rank 2. The rank is the number of Cartan subalgebras.

If H^2 commutes also with E^1_{\pm} then nothing interesting happens.

EXAMPLE:

$$H^2 = \sum_i (L_i)^2 = C_2 \quad \Rightarrow \quad L_i^2 |\lambda\rangle = j(j+1)|\lambda\rangle \text{ where } \Lambda = 2 j$$

To really get something new, H^2 must be part of a second $\mathfrak{sl}(2,\mathbb{R})$: Second $\mathfrak{sl}(2,\mathbb{R})$:

$$[H^2, E_{\pm}^2] = \pm 2 E_{\pm}^2$$
$$[E_{\pm}^2, E_{-}^2] = H^2$$

Now, if all generators in the first $\mathfrak{sl}(2,\mathbb{R})$ commutes with all in the second one, the new algebra is "trivial":

$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R}), \quad \dim = 6.$$

All states are labelled by two numbers, the eigenvalues of H^1 and H^2 .

Figure 3.

So, to get an even larger algebra (like $\mathfrak{sl}(3,\mathbb{R})$, which is dim = 8) the two $\mathfrak{sl}(2,\mathbb{R})$'s cannot commute:

$$\left[H^i, E^j_{\pm}\right] = \pm A^{ji} E^j_{\pm}$$

Note the order of the indices here. Note also that $A^{11} = A^{22} = 2$, from the already established commutation relations.

To get a mixing between the $\mathfrak{sl}(2,\mathbb{R})$'s we need A^{21} and/or A^{12} to be non-zero.

Consider the other possible commutators, between the E's:

$$[E_{\pm}^1, E_{\pm}^2] \equiv E_{\pm}^{\theta}$$
 (this is just notation, at this point)
 $[E_{\pm}^1, E_{\mp}^2]$

We now would like to relate their eigenvalues of H^i to A^{ji} (if possible).

1)

$$\begin{split} [H^i, [E_{\pm}^1, E_{\pm}^2]] &= [H^i, E_{\pm}^{\theta}] \\ [H^i, [E_{\pm}^1, E_{\pm}^2]] &= [\text{Jacobi}] = -[E_{\pm}^1, [E_{\pm}^2, H^i]] - [E_{\pm}^2, [H^i, E_{\pm}^1]] \\ &= -[E_{\pm}^1, \mp A^{2i}E_{\pm}^2] - [E_{\pm}^2, [H^i, \pm A^{1i}E_{\pm}^1]] = \\ &= \pm (A^{1i} + A^{2i}) \left[E_{\pm}^1, E_{\pm}^2\right] \end{split}$$

=

also

$$[H^i, [E^1_{\pm}, E^2_{\mp}]] = \pm (A^{1\,i} - A^{2\,i})[E^1_{\pm}, E^2_{\mp}]$$

Hence: both E_{\pm}^{θ} and $[E_{\pm}^1, E_{\mp}^2]$ are possible new elements in the bigger Lie algebra. To find the *smallest* extension of $\mathfrak{sl}(2, \mathbb{R}) \oplus \mathfrak{sl}(2, \mathbb{R})$, we will try to keep E_{\pm}^{θ} and set $[E_{\pm}^1, E_{\mp}^2]$ to zero.

So: We assume

- (1) $[E_{\pm}^1, E_{\mp}^2] = 0$ and
- (2) $[E_{\pm}, E_{\pm}^{\theta}] = 0$ and
- (3) $[E^i_{\mp}, E^{\theta}_{\pm}] \neq 0$ by Jacobi.

Now compute

$$\begin{bmatrix} E_{+}^{1}, [\underbrace{E_{-}^{1}, E_{+}^{2}}] \\ = 0 \text{ by } (1) \end{bmatrix} - \begin{bmatrix} E_{-}^{1}, [\underbrace{E_{+}^{1}, E_{+}^{2}}] \\ \underbrace{E_{+}^{q}} \end{bmatrix} = [\text{Jacobi}] = - \begin{bmatrix} E_{+}^{2}, [\underbrace{E_{+}^{1}, E_{-}^{1}}] \\ H^{1} \end{bmatrix}$$
$$= + [H^{1}, E_{+}^{2}] = A^{21}E_{+}^{2}$$

We can connect the existence of the opreator E^{θ}_+ with $A^{2\,1}$ being nonzero.

Thus
$$\mathfrak{g} = \mathfrak{sl}(2,\mathbb{R}) \oplus \mathfrak{sl}(2,\mathbb{R}) \Rightarrow A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$$

Can we get A^{21} ? Yes.

$$0 = \left[E_{-}^{1}, \underbrace{[E_{+}^{1}, E_{+}^{\theta}]}_{=0 \text{ by } (2)} \right] = [\text{Jacobi}] = \dots = -(2 A^{21} + A^{11}) E_{+}^{\theta}$$
$$\Rightarrow A^{21} = -1$$

also $A^{12} = -1$.

Thus we know the Cartan matrix for A_1 .

$$A = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array}\right).$$

To summarize $\mathfrak{sl}(3,\mathbb{R})$

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \quad \Leftrightarrow \quad \begin{cases} [H^1, H^2] = 0 \\ [H^i, E^j_{\pm}] = \pm A^{ji}E^j_{+} \\ \text{There are altogether 6 step operators: } E^i_{\pm}, E^{\theta}_{\pm} \end{cases}$$

 $\dim\left(A_2\right) = 8.$

Note:

$$[H^i, E^{\theta}_{\pm}] = \pm (A^{1\,i} + A^{2\,i})E^{\theta}_{+}$$

Note:

$$[E_{\pm}^{1}, E_{\pm}^{2}] = \pm E_{\pm}^{\theta}, \quad [E_{+}^{\theta}, E_{-}^{\theta}] = H^{1} + H^{2}$$

This means that there's a third $\mathfrak{sl}(2,\mathbb{R})$ inside $\mathfrak{sl}(3,\mathbb{R})$. Exercise!

The third $\mathfrak{sl}(2,\mathbb{R})$:

$$\begin{split} E^3_{\pm} &\equiv E^{\theta}, \quad H^3 = -(H^1 + H^2), \\ \Rightarrow &H^1 + H^2 + H^3 = 0 \end{split}$$

and all three $\mathfrak{sl}(2,\mathbb{R})$'s are completely equivalent inside $\mathfrak{sl}(3,\mathbb{R})$. In physics the $\mathfrak{sl}(2,\mathbb{R})$'s are called (weak) isospin U and V. Question: How can we make sense of all these $\mathfrak{sl}(3,\mathbb{R})$ commutators? Let the Cartan subalgebra $(H^1, H^2) = H^i$ span a vector space

$$h = h_i H^i$$

(like writing $\boldsymbol{r} = x_i \, \boldsymbol{e}^i$).

Then $[H^i, E^j_{\pm}] = \pm (\alpha^{(j)})^i E^j_{\pm}$ where $\alpha^{(j)}$ is a vector of eigenvalues for the operator E^j_{\pm} , i.e. $A^{ji} = (\alpha^{(j)})^i$ is the *i*th component of the eigenvalue vector $\alpha^{(j)}$.

$$A^{ji} = \begin{pmatrix} A^{11} & A^{12} \\ A^{12} & A^{22} \end{pmatrix} \xleftarrow{} (\alpha^{(1)})^i \xleftarrow{} (\alpha^{(2)})^i$$

so for E_{+}^{1} we get $\alpha^{(1)} = (A^{11}, A^{12}) = (2, -1).$ For E_{+}^{2} we get $\alpha^{(2)} = (A^{21}, A^{22}) = (-1, 2).$ For E_{\pm}^{θ} we get $\theta = (\alpha^{(1)} + \alpha^{(2)}) = (1, 1).$ Also E_{-}^{i} give $-\alpha^{(i)}$ and E_{-}^{θ} gives $-\theta$.

Standard is to draw these in a root diagram.

Figure 4. The symmetry between the 3 $\mathfrak{sl}(2,\mathbb{R})$'s not present.

What is wrong? Answer: We have assumed something in this picture that is not natural (canonical). We have introduced the metric $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ in this picture. But there is a canonical metric: Recall $h = h_i H^1$ with

$$\begin{split} H^{1} \! = \! \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad H^{2} \! = \! \begin{pmatrix} 0 & \\ & 1 \\ & & -1 \end{pmatrix}, \quad H^{3} \! = \! \begin{pmatrix} -1 & \\ & 0 \\ & & 1 \end{pmatrix} \\ E^{1}_{+} \! = \! \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad \dots \end{split}$$

Lie algebras of $\mathfrak{sl}(3,\mathbb{R})$.

Metric: $G^{ij} = \mathrm{tr}(H^i, H^j) = \left(\begin{array}{cc} 2 & -1 \\ -1 & 2 \end{array} \right) = A^{ji}$ again.

$$\Rightarrow h \cdot h' = h_i G^{ij} h_j$$

$$\alpha^{(i)} \cdot \alpha^{(j)} = (\alpha^{(i)})^k (\alpha^{(j)})^l G_{kl}$$

where G_{kl} is by definition the matrix inverse of G^{ij} .

$$G_{ij}\!=\!\frac{1}{3}\!\left(\begin{array}{cc}2&1\\1&2\end{array}\right)$$

Compute, with scalar product given by G:

$$\alpha^{(i)} \cdot \alpha^{(j)} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = A$$

To redraw the diagram, we have to diagonalize the metric G^{ij} : Define

$$\begin{split} \tilde{H}^{i} &= \left(\frac{1}{\sqrt{2}}H^{1}, \frac{1}{\sqrt{6}}(H^{1}+2H^{2})\right) = M^{i}{}_{j} H^{j} \\ \tilde{G}^{ij} &= \operatorname{tr}\left(\tilde{H}^{i}\tilde{H}^{j}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right) \\ \Rightarrow & \left[\tilde{H}^{i}, E^{i}_{\pm}\right] = M^{i}{}_{j}\left(\alpha^{(1)}\right)^{j}E^{1}_{\pm} \\ & \left\{\begin{array}{c} \tilde{\alpha}^{(1)} &= \sqrt{2} \left(\begin{array}{c} 1 \\ 0 \end{array}\right) \\ \tilde{\alpha}^{(2)} &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} -1 \\ \sqrt{3} \end{array}\right) \\ \tilde{\alpha}^{(3)} &= \frac{1}{\sqrt{2}} \left(\begin{array}{c} 1 \\ \sqrt{3} \end{array}\right) \end{split}$$

With the scalar product given by δ^{ij} :

$$\tilde{\alpha}^{(i)} \cdot \tilde{\alpha}^{(j)} = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} = A$$

Figure 5.

Note $\tilde{\alpha}^{(1)} + \tilde{\alpha}^{(2)} + \tilde{\alpha}^{(3)} = 0.$

Comments:

 $\mathfrak{sl}(3,\mathbb{R})$ contains $H^1,H^2,E^i_\pm,E^\theta_\pm$

There is a "metric" on the whole vector space. Killing form κ^{ab} :

$$\kappa^{ab} = \begin{pmatrix} 2 & -1 & 0 & 0 \\ -1 & 2 & 0 & 0 \\ \hline 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} H^1 \\ H^2 \\ E^i_+ \\ E^{-i}_+ \end{pmatrix}$$

Figure 6.

Split form.

Diagonalize κ in the non-Cartan part.

$$\kappa = \left(\begin{array}{c|c} A & 0 & 0 \\ \hline 0 & 1 & 0 \\ 0 & 0 & -1 \end{array} \right)$$

In this basis we have $H^1, H^2, E^i_+ + E^i_-, E^i_+ - E^i_-$ for i = 1, 2, 3.

Note

$$\begin{split} E^1_+ - E^1_- = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ \Rightarrow \mathrm{e}^{\alpha(E^1_+ - E^1_-)} = \cos \alpha + (\dots) \sin \alpha \quad \Rightarrow \mathrm{compact.} \end{split}$$

while all other e^{...} give $\cosh + \sinh \Rightarrow$ non-compact.

 $E_+ - E_-$ generate the maximal compact subgroup of $\mathfrak{sl}(3, \mathbb{R})$ and the coset $\mathfrak{sl}(3, \mathbb{R})/\mathfrak{so}(3) \approx 5$ -dimensional hyperbolic.

Compare $\mathfrak{sl}(2,\mathbb{R})/\mathfrak{so}(2)$.

Cartan matrices:

Rank 2:

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix}, \quad \det A = 3, \quad A_2 \text{ (dim 8)}$$

The off-diagonal elements we could change:

$$A = \begin{pmatrix} 2 & -2 \\ -1 & 2 \end{pmatrix}, \quad \det A = 2, \quad B_2 \text{ (dim 10)}$$
$$A = \begin{pmatrix} 2 & -3 \\ -1 & 2 \end{pmatrix}, \quad \det A = 1, \quad G_2 \text{ (dim 14)}$$

The diagonal is always (2, 2), the off-diagonal elements always negative, the determinant always possible.