
2012–02–28 Lecturer: Bengt E W Nilsson

Start from Lie group, find coordinates on the group — group expressed in terms of a manifold.

Recall: Example: SU(2)≈S3.

g=

(

α β

−β̄ ᾱ

)

⇒ det g= |α|2+ |β |2=1

We considered two different sets of coordinates on S3:

1) Euler angles. These were bad at the identity.

2) θ1, θ2, φ was a good coordinate system.

⇒ Changing coordinates from one good set to another ⇒ generators belong to a vector space.

Example. Compare generators of SU(2) and SL(2,R).

SU(2): J i=
1

2
σi, σ1=

(

0 1
1 0

)

, σ2=

(

0 −i
i 0

)

, σ3=

(

1 0
0 −1

)

SL(2,R): T 1=

(

1 0
0 −1

)

, T 2=

(

0 1
0 0

)

, T 3=

(

0 0
1 0

)

Note that σ2 is complex, but the T i are real. But the coordinates are real. If you allow complex
coefficients, there would be no difference between these two.

Comments:

1) Generators belong to vector spaces. (Change of (good) coordinates on the group ⇒ linear
combinations of the generators.

2) Lie algebra Lie(G) is a vector space with a product: the Lie product. We will just denote it with
a bracket [·, ·] just like a commutator — but it doesn’t mean it has to be a commutator.

3) Even if the generators are complex the coordinates on G are real. We will soon discuss the
relevance when we allow for complex linear combination in the Lie algebra (complexification:
sl(2,R)∼ su(2)∼ sl(2,C)).

Maurer–Cartan: g ∈G:ω= g−1dg ∈Lie(G). Since

d=dxa ∂

∂xa

At the identity:

ω=(g−1dxa∂ag)|1 =dxa(∂ag)|1 =dxaT a

but the definition ω= g−1dg works at any point on G.

This is left-invariant: g→ g0g⇒ω→ω where g0 is a constant matrix in G.

Maurer–Cartan equation: view d and view ω as 1-forms:

dω=d(g−1dg)= (dg−1)dg+ g−1d2g=(dg−1)dg

d2 = 0 since dxa∂α ∧ dxb ∂b, where the wedge product is anti-symmetric. Forms are multiplied in

an antisymmetric way. ω1∧ω2=−ω2∧ω1. dx
a∧ dxb=−dxb∧dxa.

d2=dxa∧dxb ∂a∂b=−dxb∧dxa ∂a∂b=−d2 ⇒ d2=0.
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Then

dω=(dg−1)(dg)

d(g−1g)= 0 ⇒ (dg−1)g=−g−1dg

dω=(dg−1)(dg)= (dg−1)g g−1(dg)=−(g−1dg)(g−1dg)

dω+ω ∧ω=0

Gauge theory

Let the field be written as φ which is a “vector” under some group G.

Example: In the Standard Model
(

e

ν

)

L
sit in a two-dimensional (“vector”) representation of SU(2).

The same for SU(3), etc.

Then φ̄φ is invariant, where φ̄ = φ†, which means that φ is covariant:

φ�g φ′= g φ ⇒ φ̄ → φ̄ ′= φ̄ g† ⇒ φ̄φ= φ̄ ′φ′ since g†g=1 in SU(2).

In SU(2):
(

α

β

)�g ( α′

β ′

)

=

(

a b

c d

)�
∈SU(2)

(

α

β

)

.

In physics we need to form invariants (in the Lagrangian for instance), from ∂µφ, but ∂µφ is not
covariant.

∂µφ�g (∂µφ)
′= ∂µ(gφ)� g (∂µφ)

if ∂µg � 0, i.e. for g = g(x), i.e. g is a local symmetry or gauge symmetry . NB: This means that
the coordinates on G are functions of the xµ: αa=αa(xµ).

We can fix this up by forming a covariant derivative Dµ= ∂µ+Aµ where Aµ∈Lie(G), and define
a transformation rule for Aµ. The rule for Aµ follows from demanding that Dµφ is covariant:

Dµφ�g (Dµφ)
′= g(Dµφ)

⇒Dµ
′ φ′= g(Dµg

−1φ′)

Drop φ′⇒

Dµ
′ = gDµ g

−1

In detail:

∂µ+Aµ
′ = g(∂µ+Aµ)g

−1= g ∂µ g
−1�

=∂µ+g(∂µg
−1)

+ gAµ g
−1

Aµ
′ =(gDµg

−1)∈Lie(G).

[Dµ,Dν]φ=	 =Fµνφ

where Fµν = ∂µAν − ∂νAµ+AµAν −AνAµ.

Exercise: Verify that Fµν�g g Fµν g
−1 when Aµ→ gDµ g

−1 .
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In form language

F =dA+A∧A

(This is completely coordinate independent.)

Exercise: Use F =
1

2
dxµ∧dxνFµν to check that this Fµν is the one above.

Example: In two-dimensional spacetime:

∫

S2

F if F in U(1).

This is related to the monopole number.

In three dimensions

1

2

∫
(

A dA+
2

3
A∧A∧A

)

This is Chern–Simons. Exercise: Show that this is gauge invariant.

In four dimensions:
∫

F ∧F

gives you instanton numbers.
∫

F ∧ ⋆F

Yang–Mills action.

Exercise: For U(1): F =dA. Show that for any G, F ∧F =dJ and find J .

You also get General Relativity for free. On a curved manifold ⇒ introduce tangent space (which
you have to do, otherwise you can’t describe spinors). Let A be spin connection, and then F will
be the Riemann tensor (in a first order formulation, more later perhaps).

Exponentiation of Lie algebras

We have seen that linearization of a Lie group G leads to its Lie algebra.

Definition. An algebra A is a vector space over a field F (reals, complex, quaternions, number
fields) with a product ×:A×A→A, that is bilinear and distributive. Bilinear menas that for α,
β ∈F and X,Y ∈A:

(αX)× (βY ) =αβX ×Y

Distributive means α(X + Y )=αX + βY .

Definition. A Lie algebra is an algebra with a product called Lie product with the properties:

1) It is anti-symmetric: [X,X] = 0. (X = y+ z⇒ [y+ z, y+ z] = 0⇒ [y, z] + [z, y] = 0).

2) It satisfies the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0.

Note: If x y is defined and hence [x, y] = x y − y x, then the Jacobi identity is trivial. If the x y

product is not defined, then the Jacobi identity is not trivial and is just part of the definition of a
Lie algebra. It is needed to go backwards from the Lie algebra to the Lie group.
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Can we reobtain the Lie group from the Lie algebra? One standard way is to repeat small steps
in some Lie algebra direction X ∈Lie(G) and infinite number of times. X ∈Lie(G) means that X
is a linear combination of the generators of the algebra: X = xaT a.

f(X)= lim
n→∞

(

1+
X

n

)n

Note: If X is a number, then ∂Xf = f⇒ f =eX.

So f(X)= eX.

Note: we can simply view this as

eX =1+X +
1

2
X2+


Is this useful? Can we compute eX in general? Yes, but tricky!

Example: SL(2,R) again:

X = x T 1+ yT 2+ z T 3=

(

x y

z −x

)

⇒ eX =exT
1+yT 2+zT 3

=
∑

n=0

∞
1

n!
(X)n=





cosh θ+x
sinh θ

θ
y

sinh θ

θ

z
sinh θ

θ
cosh θ−x

sinh θ

θ





Two ways:

1)

T1
2=

(

1 0
0 1

)

, T2
2=0, T3

2=0

T1T2+T2T1=0, T1T3+T3T1=0

T2T3+T3T2=1

X0=1

X1=X

X2=(xT1+
 )2=(x2+ y z)1≡ θ21

X3∼X

X4∼1

2) Use Caley–Hamilton theorem: Every matrix M satisfies its secular equation.

Example:

X =

(

x y

z −x

)

X −λ1=

(

x−λ y

z −x−λ

)

Then det (X −λ1) = 0:

λ2=x2+ y z≡θ2

λ2=−detX
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So CH theorem: X2=(x2+ y z)1=−detX 1.

In general for 2× 2 matrices A:

A2−A trA+1 detA=0.

Exercise: Find the expansion for 3× 3 matrices.

Three important questions.

Lie�linearization Lie

group �
exp?

algebra

i) Does the exponential map give back the whole group?

ii) Are Lie groups with isomoprhic Lie algebras themselves isomorphic?

iii) Is the map Lie algebra�exp Lie group unique?

In general all answers are no!

i) For compact groups: Yes!

SU(2):Yes x2+ y2+ z2+w2=1 or |α|2+ |β |2=1

SL(2,R):No ≈SU(1, 1): |α|2− |β |2=1 ⇒ x2+ y2− z2−w2=1

But Cartan found that if we exponentiate using eXc om p a c t eXn o n c om p a c t it works. You can divide the
generators into compact and non-compact ones and exponentiate them separately.

ii) No, since SU(2) and SO(3) have the same Lie algebra, but the groups are different. You can’t
exponentiate blindly. If one gets the universal covering group the answers is yes.

iii) Is not unique! But can be related by Campbell–Baker–Hausdorff formula (CBH).

Lie algebras: general properties

Vector space, Lie product, Jacobi identity.

Comments:

1) If X and Y ∈Lie(G) then so is αX + βY (vector space) since

(1+ εαX +
 )(1+ εβ Y +
 )=1+ ε(αX + βY )�
∈Lie(G)

+

ii)

g1g2g1
−1g2

−1=(1+ ε1X +
 )(1+ ε2Y +
 )× (1− ε1X +
 )(1− ε2Y +
 ) =

The linear terms cancel so the X2 etc must be included.

=1+ ε1ε2[X,Y ] +

This means that [X, Y ] must also be in the Lie algebra. Then it must be expressible in terms of
the generators too. With X = xaT a we get

[T a, T b] = fab
c T

c

where the coefficients fab
c are called structure constants .

iii) Jacobi identity. With [x, y]=xy− yx it is trivial. But the product XY is never needed: when
the product appears, it always appears as a commutator. So strictly speaking you never need the
ordinary product XY .

eX eY 7
CBH

e
X+Y +

1

2
[X,Y ]+

1

1 2
[Y ,[Y ,X]]+

1

1 2
[X,[X,Y ]]+


Example: Use it for Heisenberg:

[p̂ , q̂ ] =−i ~.
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