
2012–02–07 Lecturer: Bengt E W Nilsson

Quantum Mechanics (this part is basically from the book by Tinkham)

In Quantum Mechanics we often define the physics by a Hamiltonian (energy).

Example: Hydrogen atom.

Figure 1. Hydrogen atom: an electron orbiting a proton.

H =
p2

2m
+V (r) where V (r)=−

e2

r
.

H is invariant under rotations: SO(3).

H gives the Schrödinger equation.

Ĥ ψn=Enψn

Ĥ =−
~
2

2m
∇2+V (r)

Here the symmetry is SO(3), which is the continous rotations in three dimensions. But from the
point of view of discrete groups we could imagine the electron move in the field of three sources in
a triangle (figure 2). This means that SO(3) is replaced by D3.

Figure 2. An electron moving around a symmetric triatomic molecule.

In any of these cases this means, with P̂R being a symmetry operation (i.e. an element of the sym-

metry group), that P̂RĤ = Ĥ P̂R. The symmetry operation must commute with the Hamiltonian.

Ĥ (PRψn)=En(PRψn)
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i.e. if ψn is a solution the Schrödinger equation, so is PR ψn, and with the same eigenvalue. So
a symmetry leads to degenerate eigenvalues and the total set of degenerate eigenfunctions must
constitute a representation of the symmetry group.

Then we define (Wigner)

P̂Rψn(x, y, z)=	
P̂R changes the function ψ. R is actually a rotation, either continuous or discrete. Then we define

P̂Rψn(x, y, z)= ψn(R
−1(x, y, z))

Note that we get the inverse R−1 here.

If (i) (the representation index) and a, b enumerate the degenerate ψ’s: For each eigenvalue En

P̂Rψa
(i)=

∑

b=1

li

ψb
(i)(

Γ(i)(R)
)

ba

Let’s do Bloch’s theorem now.

Example: Bloch’s theorem: We have an electron moving in a lattice in one dimension. Lattice
we assume to be periodic with lattice spacing a, number of sites h and the length is L= a h. We
identify the end points so that it is rather like a circle (figure 3).

Figure 3.

Introduce the operator P̂−a (figure 3), shifting the function to the left.

⇒P̂−aψ
(r)(x)= ψ(r)(P−a

−1(x))= ψ(r)(x+ a)

(r) is representation label.

The group acting on the lattice is cyclic group Zh, with
(

P̂a

)

h= P̂identity. Representations are one-
dimensional complex: e2pir/h.

⇒ P̂−aψ
(r)(x) = ψ(r)(x+ a)= ψ(r)(x) e2πir/h

ψ(r)(x+ a)= e2πira/Lψ(r)(x)≡ eikaψ(r)(x)
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where k=2πr/L. So, now denote the representation by k instead of r (as is standard)

⇒ψk(x+ a)= eikaψk(x)

Bloch’s theorem says that the general solution to this equation is

ψk(x)= uk(x) e
ikx

where uk(x) is periodic with period a.

Direct and semi-direct product groups.

Suppose we have a group G which has two normal (or invariant, that’s the same thing) subgroups
H1 and H2. Then we can form G/H1 and G/H2 and they will both be groups, and hence

G=G/H1×H1=G/H2×H2

1. If G/H1=H2 and G/H2=H1 then G is the direct product of H1 and H2, written

G=H1×H2.

2. Consider now D3. It has two subgroups, A3 and D2. One is a normal subgroup and the other
is not. A3 is normal — if you conjugate A3 with all the elements of D3 you get back A3.

D3= {E,A,B,C ,D, F }

A3= {E,D, F }: rotations

D2
(A)= {E,A}, D2

(B)= {E,B}, D2
(C)= {E,C}.

The conjugation of the D2’s will mix them (using A3 when conjugating the elements). A3 acts on
the D2.

D3=A3⋊D2

A3 normal, D2 not normal. This is called the semi-direct product .

Example: Poincaré group (Λ, T ) where Λ are rotations in space-time (homogeneous Lorentz
transformations), and T are translations.

(Λ1, T1)(Λ2, T2)= (Λ1Λ2,Λ1T2+T1)

Easy to see by writing
(

Λ T

0 1

)

Exercise!

Note: Matrices for G=H1×H2 are

ΓAB
(G)�
∈G

=Γab
(H1)�
∈H1

Γαβ
(H2)�
∈H2

We can view the A and B as composite indices: A=(a, α), B=(b, β).

⇒
∑

I

(lI)
2=

∑

ij

(

li
(1)
lj
(2)

)

2
=
∑

i

(

li
(1)

)

2∑

j

(

lj
(2)

)

2
= h(1)h(2)= g
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Now we have a break.

Chapter 3: Continuous groups = Lie groups

Example

Ĥ =−
∇2

2m
+V (r)

where V (r) is a central potential, that only depends on r= x2+ y2+ z2
√

, and ∇2= ∂x
2+ ∂y

2+ ∂z
2

where ∂x ≡
∂

∂x
. This all means that Ĥ is SO(3) invariant, where SO(3) is the group of three-

dimensional rotations.

So: Rotations in three dimensions. We take a vector r and we rotate it:

r→ r
′=R r

where R is a 3× 3 matrix. Written out:





x

y

z



→





x′

y ′

z ′



=R





x

y

z



≡







Rxx Rxy Rxz

Ryx Ryy Ryz

Rzx Rzy Rzz











x

y

z





In index notation:

xi→xi
′=Rijxj

Here we use the Einstein summation convention: sum over repeated indices.

Then since r2 is invariant under rotations we have (r ′)2= r2= r
T
r.

(r ′)T r
′= r

TRTR r= r
T
r

Thus, the rotation matrices must satisfy RTR=1. This we also write R∈O(3): O(3) is the group

of 3× 3 real matricees satisfying RTR=1. In indices the requirement is (RT)ijRjk= δik or

RjiRjk= δik.

Then for i=1, k=1, say, we have
∑

j
(Rj1)

2=1. Squares sum to one: Rij∼ angles.

The invariance of r2 can be reexpressed as the tensor invariance of δij (the metric for the scalar
product).

δij �R RikRjl δkl=(R1RT)ij

Invariance of δij⇒R1RT=1⇒RRT=1.

Now: Let us introduce covariant and contravariant vector (or indices):

xi: contravariant vector
xi: covariant vector

Then define (in vector space)

x′ i= xjRj
i

and then (in dual vector space)

xi
′=(R−1)i

jxj
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since xixi is trivially invariant.

Check: x′ ixi
′= xjRj

i(R−1)i
kxk= xixi.

The point: xixi then is invariant for any 3× 3 real R-matrix: R∈GL(3) with det (R)� 0.

GL(n): det (R)� 0.

O(n); RRT=1⇒ (detR)2=1⇒ detR=±1. If we choose detR=+1 we get SO(n).

Example from Quantum Mechanics.

Spin in Quantum Mechanics is represented by two-component complex “vectors”:

χ=

(

α

β

)

, α∈C, β ∈C.

The scalar products are

χ†χ=
(

ᾱ β̄
)

(

α

β

)

= |α|2+ |β |2 .

Invariance is in terms of 2× 2 complex matrices U :

χ→ χ′=Uχ, χ†→ (χ′)†= χ†U †

and χ†χ is invariant:

(χ′)†χ′= χ†U †Uχ= χ†χ

⇒U †U =1

i.e. U ∈U(2), the group of 2× 2 unitary matrices.

Taking the determinant:

(detU †)(detU)= 1

Now the determinates are different, because of the complex conjugation.

e−iα eiα�
det U

=1

⇒U(2)=U(1)× SU(2) where SU(2) are the 2× 2 unit matrices with detU =+1. U(1) is {eiα}.

Note: U ∈SU(2):

U =

(

a b

−b∗ a∗

)

⇒|a|2+ |b|2=1⇒U †U =1

But this means that SU(2)≈S3, the three-dimensional sphere:

a1
2+ a2

2+ b1
2+ b2

2=1

where a= a1+ i a2, b= b2+ i b2. Each group element in SU(2) corresponds to a point on the three-
dimensional sphere S3.

If SU(2) is isomorphic to S3, what manifold is SO(3)?

Answer: SO(3)=RP3: sort of one half of S3, identifying points on the boundary (figure 4).
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Figure 4. RP3 seen as one half of S3, identifying points on the boundary.

Note: S3 has no non-trivial loops. RP3 has Z2-non-trivial loops. (Some loops must be covered
twice before being trivial.) That’s an exercise.

Figure 5. On the sphere S2 all loops can be continuously contracted to a point (without leaving the

surface). On the torus there are loops that can be continuously contracted to a point, but also non-trivial

loops winding around the torus.

Back to xi and xi. In General Relativity we have xµ and xµ.

While xixi is invariant for any R=GL(3), I can do something similar that is even more general.

d=dxµ ∂µ

is invariant under any non-linear coordinate transformation (non-degenerate). It is called the
exterior derivative. Using this Maxwell’s equations can be written F =dA, dF =0, d ⋆F =0.

Next time we will continue this discussion of real matrices forming groups, and complex matrices,
and quaternionic matrices. (Octonions will be discussed later on.)
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