2012-01-27 Lecturer: Bengt E W Nilsson

Characters and the Great Orthogonality Theorem

We will use this to do polynomial equations and some quantum mechanics.
EXAMPLE: Recall: D3, representation I'(R), VR € G. Matrices, g of them (g=|G]).
i) 1 (one-dimensional representation).

ii) 1 (F,D,F) and —1 (A,B,C) (one-dimensional representation)

iil) 2 X 2 matrix representation.

others: 3 x 3 matrices, obtained from viewing D3 as the permutation group Ss.

100 1 1
—=| 001 2 |= 3
010 3 2

where the numbers refer to the corners of the triangle.

also, later: the regular representation which is g-dimensional. =

—  Goal: Classify all irreducible representations of any group G. —

Characters: Traces of T'(R) in representation i: x((R) = Tr(T'¥(R)). We had character tables,
with “funny” orthogonality properties.

Recall: “Variant of Schur’s lemma™ If M exists such that for two irreducible representations re
and T') (dimensions ; and 1, respectively):

MTO(A)=TW(Ay) M for all A, €G

then either (1) I;#1; and M =0< the representations are inequivalent; or (2) I;=1; and M =0
(the representations are inequivalent) or det M # 0 (the representations are equivalent).

THEOREM: The Great Theorem

Consider all irreducible representations of a group G, I'”| then

VRZG (F(Z)(R))ZV(F(])(R) )aﬁ = % 6ij 6ua 6uﬂ
€

Implications of this theorem

1.

g is the number of components of the vectors that are orthogonal; the sum ranges over g terms,
where g is the order of the group. ). (1;)? are the number of vectors enumerated by i, u, v.

We will later prove equality: . (I;)2=g. That is the dimensionality theorem.



2. Turn the Great Theorem into a theorem for characters:

VOR) =T (TOR) = S (TO(R))

o

|
-

Z Z on the Great orthogonality theorem implies

m @
(h=v) (a=p)

Note: x)(R) are the same within each class (z Az~! = B, trace cyclic). Thus

> x(C) XV (Cr) Nie= g5
k

sum of
classes

where N is the number of elements in the class Cx. Conclusion: orthogonality of rows in the
character table, and the number of irreducible representations < the number of classes. [Consider
x'(Ck) to be the k’th element of vector number i: then the vectors are orthogonal. The number
of orthogonal vectors is always less than or equal to the dimension of the vector space.|

Also: Form the matrix

(X(l)(cl) X(l)(CQ) \

Q= k X(Q)E(Cl) )

and consider

i.e. orthogonality of the columns of the character table.
So: the number of classes equals the number of irreducible representations.

EXAMPLE: D3: g =6, number of classes: 3. [This means that the number of irreducible represen-
tations is 3, which we can insert into the dimensionality theorem stated above.|



Only one way of doing that: l;=1,lo=1,I3=2. <

Summary: Rules for construction of character tables.

i) number of irreducible representations = number of classes.
i) 32, (1)*=g

iii) orthogonality of character columns.

iv) orthogonality of character rows.

v) another rule (not proved yet):
(N XD€5)) (NixD(Cr)) =1 e Nix(C)
]

where cjp; are called class multiplication constants.
EXERCISE: Reconstruct the D3 character table from properties i) to iv) above, and check v). &
Furthermore: Decomposition of reducible representations.

EXAMPLE: 3 X 3 representation of D3

For any representation I'(R) with characters x(R) we have
X(R)=3" aix"(R) VR.
But then
1 .
ai:gz Nix V" (Cre) x(Cr)
k

(Exercise!)
DEFINITION: Apply this to the reqular representation:

ExaMpPLE: Write the multiplication table of D3 as

Ds |EFEABCDF

E E A

A'|A E

B! E A

c! E A

D! A FE

F-1 A E

= the g-dimensional representation is
1 1
1 1

1 1
reg — reg =
) A A X

1 1
1 1



This is a g-dimensional representation.

Properties: x'*8(E) =1 =g, x"*®(R)|r+ £ =0. This implies a theorem:

THEOREM: The celebrated theorem

a; =1l;, where the a; are the expansion coefficients of the x"&.

Proof.

1 j % re 1 j ) * re
4= 23 XU R) X = X)) =
R

THEOREM: The dimensionality theorem

Proof.

EXERCISE: For D3, decompose the 3 x 3 representation of S3 given previously.

EXERCISE: Find all irreducible representations of any finite group of prime order.
prime order = cyclic = abelian = each element is its own class! = there are g classes =

each representation is one—dimensionalsz (1;)2=g.

2

exp (2771%), n=0,...,g—1.

Basic Galois theory

<>



Consider an n:th order polynomial equation in z € C with roots z;, i=1,...,n.
(z—21)(2 — 2z9)++(2 — z,) =0.

AR PP L Y PO SR (-)"I1,=0
where

Li=z1+20+ -+ 2,
I2:Zz‘<j Zizj=z122+ 2123+ + 2223+

Inzzl 29 Zn

These I’s are all invariant under permutations of the z;’s, i.e. under the Galois group .S,,.

Note: Any function f(z;) invariant under S,, can be expanded in terms of I’s.

finv = f(IhI?a (Y In)

Problem: Find all z;’s expressed in terms of the I's. You know the I’s from the polynomial equation
— if you can express the z;’s in terms of the I’s, you have solved the polynomial equation.

Galois theorem A solution z; € C can be found iff there is a chain of subgroups in the subgroup
diagram of S,, such that each arrow in the chain conects a G and an H such that

i) H is an invariant subgroup of G,
ii) G/H is abelian.

This is constructive — i.e. this gives an explicit solution to the equation.

Solve the cubic

Galois group =Ss.

Diagram: figure

Is S5/ A3 abelian? Yes, S3/ A3z~ Ss.

Also As/I = As is abelian.

Polynomial equation (z —7r1)(z —rg)(r —r3) =0
Ii=ri+re+rs

IQ =7riro+ r1rs + 19 rs
I3=rirors

These are all invariant under S3. Now, start from the last double arrow.
As/I = As is abelian, order(As) =3.
This implies 3 one-dimensional irreducible representations.

As | I (123) (132)
rlr 1 1
rolr w w? ’
rélr w2 w

w= e27r1/3



One-dimensional representation can be written from this

V1 1 1 1 71 T1 —+ T2 —+ T3
ve |=1 1 w w? ro |=| r1+wre+w?rs
V3 1 w? w T3 r+w’ro+wrs

That is
r. vi=r1+7ro+73
=1,(123),(132) all give back v;.
'@ vy=r+wrs+w?rs
Invariant under I and goes to wvy under (123) and to w?vs under (132).
Note: Since vy is symmetric under S3 and As it must be expressible in terms of I’s.
vy =17.
...while vo and v3 are not invariant under As.

Next we turn to S3/As=S2. We need functions invariant under Az but not under Sy. These are
(v2)? and (v3)3.

Check SQ. (12) € SQ.

(12)(v2)3 = (ro + wry +w?r3)3 = w3 (11 + w?ry +wr3z)® = (v3)3
]

Also: (v3)? az (v9)3.

This means that S; is the Galois group of a quadratic equation:
reC: (v — (v2)%)(x—(v3)%)=0

Invariant under Ss:

Ji= (v2)® 4 (v3)?
Jy = (v2)*(v3)*

These J;’s are invariant under Ss = They must be functions of the I’s.

Ji= Z Ajigin TIP3
11+2i24+3i3=3
Jo= Z B
i1+2i0+3i3=6

{ggi} :%Jlj: JE—J

1 1/3
= {Zi} = (ijli J?— JQ)

Finally, the solution is obtained by inverting the character table:

21 __( character :1
N table 2
U3 3

1Y
=| ro :§ 1 w? w Uo
r3 1 w w? u3

11 72 713
i1i2i3[1 12 3

But of course

\v]

Home problem: quartic. figure.



