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Are you doing the small exercises? You need to do them! It is very easy to misjudge your under-
standing here. Good boks: Gilmore “Lie Groups, Physics and Geometry”, Tinkham — Wikipedia
is good. The mathematics in Wikipedia is fantastic.

So far we have defined what we mean by a group G and we talked about cosets G/H , where H

could be an invariant (or normal) subgroup. We talked about classes : x A x−1=B. From this you
form an invariant subgroup.

Example: D3:

E,A,B,C�
flips

, D, F�
rotations

There are two types of subgroups here. We have {E, D, F }, and {E, A}, {E, B}, {E, C}. The
first one, {E,D, F }, is invariant, but the others are not invariant. Let’s call the rotatio subgroup
HR = {E,D, F }.

G/HR = group

G/{E,A}= “coset space”, not a group

Representations (matrices)

Example: D3:

1. Ai→ 1

(holomorphic, many-to-one)

2. {E,D, F }→ 1

{A,B,C}→−1

(holomorphic, many-to-one)

3. Ai→ 2× 2 matrices: faithful.

(isomorphic, one-to-one)

4. Ai→ 3× 3 matrices: faithful.

Sn is the symmetry group of n elements = {all permutations}.

S3≈D3





1 0 0
0 1 0
0 0 1



,





1 0 0
0 0 1
0 1 0



, etc

which just permutate three elements, e.g.





1
2
3



→





. . .

. . .

. . .









1
2
3



=





2
3
1





Exercise: find these matrices!
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Note: There exists a subgroup A3 of S3 given by elements with det=+1.

Note: An, for n> 5, (order |An|=
1

2
n!).

Can we classify all irreducible representations?

Meaning: An irreducible representations (“irrep”) cannot be brought to block-diagonal form by any
change of basis.

Representation: Γ(A) where A is the formal element in G, and Γ is a matrix of some size.

Irreducibility: a change of basis: Γ→S−1ΓS. This is a “similarity transformation”.

Example: Can representation 4 of D3 be written in block form using smaller representations?





. . .

. . .

. . .



→S−1





. . .

. . .

. . .



S=





× 0 0
0 × ×
0 × ×





then 4 is shown to be fully reducible.

Note: It could happen that the closest to block form possible is

(

A B

0 C

)

.

This is called reducible, but not fully reducible.

Exercise: Write the Poincaré Lie algebra in this form.

To answer questiosn about the existence of irreducible representations we need a basis-independent
concept: the character: Γ(i)(A)→ χ(i)

(

Γ(i)(A)
)

where A is an element in G and i is the represen-
tation number. The definition is

χ(i)
(

Γ(i)(A)
)

≡Tr
(

Γ(i)(A)
)

which means that Γ(A) and S−1Γ(A) S give the same χ(i)(Γ(A)). χ(i) depends really only on
classes (xAx−1=B).

Character table:

D3:
C1= {E}
C2= {A,B,C}
C3= {D,F }

→

χ(i)(R) C1 3 C2 2 C3

Γ(1) 1 1 1

Γ(2) 1 −1 1

Γ(3) 2 0 −1

Note two funny propertiets: The columns are orthogonal to each other. The rows are orthogonal
using the number of elements (which we also write as coefficents in the label row) as a metric.

These facts follow from the Great Orhogonality Theorem.

Proof

First: prove that any matrix representation with detAi� 0, Ai∈G (denote matrix representation
by Ai instead of Γ(Ai) is equivalent (via a similarity transformation) to a unitary representation.

This follows from:
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Consider some representation Ai∈G. Then form

H =
∑

i=1

g

AiAi
†=H † i.e. H is hermitian.

But any hermitian matrix can be diagonalised by a unitary matrix, i.e.

∃U such that d=U−1HU ,UU †=1, d= diagonal matrix.

Exercise: show this!

Here all elements in d are real and positive. Positive, since

d=U−1HU =
∑

i=1

g

U−1AiAi
†U =

∑

i=1

g

U−1AiU�
≡Ai

′

U−1Ai
†U�

≡Ai
′†

≡
∑

i

Ai
′Ai

′†.

But then (no summation convention)

dµµ=
∑

i

(Ai
′Ai

′†)µµ=
∑

i

∑

ν

(Ai
′)µν (Ai

′)νµ=
∑

i

∑

ν

(Ai
′)µν(Ai

′∗)µν =
∑

i

∑

ν

|Ai
′|2> 0

⇒d1/2 is possible to form⇒Ai
′′= d−1/2Ai

′d1/2

is unitary.

Check: Ai
′′Ai

′′†= d−1/2Ai
′ d1/2 d1/2Ai

′†d−1/2. Insert 1= d−1/2∑

i
Ai

′Ai
′†d−1/2.

Ai
′′Ai

′′†= d−1/2Ai
′ d1/2

(

d−1/2
∑

j

Aj
′Aj

′ †d−1/2

)

d1/2Ai
′†d−1/2=

=d−1/2
∑

j

(Ai
′Aj

′ )
(

Aj
′ †Ai

′†
)

d−1/2= d−1/2
∑

j

(Ai
′Aj

′ )(Ai
′Aj

′ )†d−1/2=

(rearrangement theorem)

=d−1/2
∑

j

Aj
′Aj

′ †d−1/2=1.

=Ai
′′ are unitary.

Schur’s lemma

All matrices that commute with all the matrices in an irreducible representation must be constant,
as in proportional to the unit matrix.

Proof. From the previous statement we can always use a unitary representation. So let Ai ∈G

(really Γ(Ai)) be unitary. Then the matrix M satisfies MAi=AiM, ∀Ai∈G. Then † implies:

Ai
†
M †=M †Ai

†

Ai(	 )Ai⇒

M †Ai=AiM
†.

Thus, if M commutes with all Ai’s, so does M † and so do H1 =M +M † and H2 = i (M −M †)
which are both hermitian.
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So, next we prove that a with all Ai commuting hermeitian matrix is constant . Now, since H is
hermitian (both of them), it is diagonalisable:

U exists such that d=U−1HU

⇒ Ai
′ d= dAi

′ for Ai
′=U−1AiU.

Check: U−1AiUU−1HU =U−1HUU−1Ai. OK.

In components Aid= dAi reads

(Ai
′)µν dνν = dµµ(Ai)µν

⇒(Ai
′)µν(dνν − dµµ) = 0.

So if dνν � dµµ then (Ai
′)µν =0 for all i.

Example. Supose

d=

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

















⇒ ∀i: Ai=

( �0 0
0 �0 )

but then the rperesentation is reducible.

Also if Ai is an irreducible representation then all dµµ must be equal. d= k 1.

Lemma (variant of Schur)

If M exists such that for two irreducible representations Γ(i) and Γ(j) of dimension li and lj and
M is such that it commutes:

M Γ(i)(Ak)=Γ(j)(Ak)M, ∀k

Then: (1) li� lj and M =0⇒The representations are inequivalent. Or

(2) li= lj and M =0 (irreducible representations inequivalent) or detM � 0 (irreducible represen-
tations equivalent).

Finally,

The Great Orthogonality Theorem

Consider all inequivalent irreducible representations, unitary Γ(i)(R) of a group G, then

∑

∀R∈G

(Γ(i)(R))µν
∗
(

Γ(j)(R)
)

αβ
=

g

li
δij δµα δνβ.

The orthogonality here is between (vectors)iµν=(Γ(i)(A1)µν ,Γ
(i)(A2)µν ,	 ,Γ(i)(Ag)µν). How many

vectors? (number of irreps)× li
2.

Proof. First, consider two inequivalent irreducible representations Γ(1) and Γ(2) and form

M =
∑

R∈G

Γ(2)(R)X Γ(1)(R−1)
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Here X is any matrix. Then M satisfies

M Γ(1)(R)=Γ(2)(R)M

(for any X).

Exercise: Check this! (Rearrangement theorem needed.)

But then M =0 by previous lemma.

⇒Mαµ=0=
∑

R

∑

β̄ ,ν̄

(Γ(2)(R))αβ̄Xβ̄ν̄

(

Γ(1)(R−1)
)

ν̄µ
.

Now, sinceX is arbitrary set Xβ̄ν̄=1 (let this be the only non-zero element). Then we get (skipping
the bar on β̄ and ν̄ ):

∑

R

(Γ(2)(R))αβ(Γ
(1)(R))νµ

∗ =0

This is the δij on the right hand side with i � j, since we assumed that the representations are
different.

Secondly: Let i= j. Now we look at the same representation.

M =
∑

R

Γ(R)X Γ(R−1)

By Schur’s lemma

M = c1.

Xνρ=1⇒

cνρδµµ′=
∑

R

(Γ(R))µν (Γ(R−1))ρµ′.

cνρ l=
∑

R

∑

µ

(Γ(R))µν (Γ(R
−1))ρµ=

∑

R

(Γ(R−1)Γ(R))ρν =

=
∑

R

(Γ(R−1R))ρν =
∑

R

(Γ(1))ρν =
∑

R

δρν = g δρν

cνρ=
g

l
δνρ

Thus

∑

R

(Γ(i)(R))µν
∗
(

Γ(j)(R)
)

αβ
=

g

li
δij δµα δνβ
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