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Groups

Definition: Group G, elements g ∈G (for finite groups we also use capital letters A,B,C,	 for
the group elements). There is a composition operator (“multiplication”), denoted · or ◦. A group
satisfies the axioms

1. Closure: g1, g2∈G⇒ g1 · g2= g3∈G.

2. Associativity: (g1 · g2) · g3= g1 · (g2 · g3). This is satisfied by matrices, but there are objects
that do not satisfy associativity, e.g. octonions.

3. Unit element: ∃E:EAi=Ai∀Ai∈G.

4. Inverse: For each Ai∃Ai
−1 such that AiAi

−1=E.

There are many kinds of groups:

• Finite groups (discrete groups).

• Lie groups: infinitely many elements, continuous. Either finite dimensional groups or infinite
dimensional groups. The dimension is the number of continuous parameters.

There is also something called supergroups. There are also quantum groups, but they are not
groups at all.

We had one example last time, which we called D3, which is the symmetry group of an equilateral
triangle.

Figure 1. A,B,C flip elements, D,F are rotations, E unit operaton. This leads to a multiplication table.

Note: There exists a matrix representation of the multiplication table by 2× 2 matrices: faithful ,
or true (one-to-one: isomorphism).

You can put all elements equal to one: that trivially satisfies the multiplication table. You can also
do E,D, F =1 and A,B,C =−1. These are many-to-one: homomorphism.

Big question: Are there any other matrix representations? (What exactly is the question?) There
is an answer for a well-formulated question here.

Definition: A representation (here we always refer to matrix representations) satisfies

A,B,C ∈G ⇒ A-Γ Γ(A) etc such that if AB=C then Γ(A) Γ(B) =Γ(C).

We proved the rearrangement theorem last time.

Cosets: A subgroup H in G is a subset satisfying the group axioms.

Consider Hx. If x∈H⇒Hx=H . If x � H⇒Hx= set disjoint to H.

Figure 2. Set of disjoint subsets called cosets. It is a coset space (the “space” part makes more sense when

we come to Lie groups).

Hx is called a right coset. H\G. Similarly for xH→G/H left coset.
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Two cosets are either identical or disjoint. ⇒|G|= g is the order of G, |H |=h, then g=h · l where
l is an integer called the index of H in G. l is the number of cosets.

Classes: Two elements A and B are conjugate to each other if A= xBx−1 for some x∈G.

Then if A is conjugate to B which is conjugate to C, then A is conjugate to C.

D3: E,D, F ,�
H=subgroup

A,B,C

Subgroups: i) Hi{E,D, F } of order 3; ii) {E,A}, {E,B}, {E,C} have order 2.

G/H = group (?)

G/Hi= group. G/Hi i� group. Just a “coset set”.

Classes in D3

C1= {E}, C2= {A,B,C}�
flips

, C3= {D,F }�
rotations

Invariant subgroups

Let H be a subgroup of G and satisfy xHx−1=H for any x∈G.

First xH =Hx.

Definition: G is simple if and only if invariant subgroups are {E} and G itself.

Note:

1. H ·H =H , where H ·H ≡{h1 ·h2|h1∈H,h2∈H }.

2. Let xa be an element in G not inH (i.e. in G/H=H \G) i.e. H xa=xaH . Then let H xa≡Ta

so that HTa=HHxa=Hxa=Ta. Acts like a unit element.

3. Ta · Tb=HxaHxb=HHxa xb=H xaxb�
xab

≡ Tab. ⇒ If H is invariant, then G/H =H\G is a

group, called the factor group or the quotient group.

Class multiplication

If you take a class Ci with another class Cj keeping track of the elements and how many times they
appear, the product Ci Cj becomes a new class.

CiCj=
∑

k

cijk Ck.

Now we count the number of elements on each side, and they must match.

In D3: C2= {A,B,C}.

C2 C2=3 C1+3 C3

C2C3=2 C2

Let us enumerate some examples of finite groups to set the stage.

1. Order =1: {E}.

2. Order =2: {E,A} such that A2=E.
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3. Order=3: {E,A,B} where B=A2.

4. Order=4: only two cases. The continuation of the previous pattern: cyclic groups.

{E,A,A2, A3} whereA4=E.

The other case is the Vierergruppe. D2: dihedral group.

E A B C

E E A B C

A A E C B

B B C E A

C C B A E

→ abelian:AB=BA etc.

Interpretation: Cyclic: rotations of �. Vierergruppe: cube with only π rotations. (Including
π/2 rotations leads to a non-abelian group.)

Note D2 = Z2 × Z2 where × is the direct product, i.e. G = G′ × G′′, then with (g1
′, g1

′′) ∈ G and
(g2

′, g2
′′) then (g1

′, g1
′′) · (g2

′, g2
′′)= (g1

′ · g2
′, g1

′′g2
′′)∈G.

Exercise: Verify from the table that D2=Z2 ·Z2.

Order=5 (as for all prime orders):

• The group is unique and simple, and cyclic. {E,A,A2,	 , A4} with A5=E.

This generalizes to all prime numbers.

Order=6. Here we have the permutation group of three objects: symmetry group S3. A particular
subgroup is A3= alternating subgroup= {all even permutations}.

Representation by 3× 3 matrices:





1
1

1



→S3.
if det (A) =+1
thenA∈A3.

Subgroup diagrams.

Figure 3.

Galois : If there is a path where all subgroups are invariant and G/H is abelian at each step starting
from Sn any nth order oplynomial can be uniquely solved. The subgroup diagram for S4 implies
that any 4th order polynomial can be solved.

Finite groups in physics

Three dimensional lattices: covering operations.

• Translations: T =n1 a1+n2 a2+n3 a3 where ai are the primitive vectors defining the lattice,
and ni∈Z. This is an infinite order group.

• Rotations and inversions. Point groups: 32 examples.

Together these are called space groups, and there are 230 examples.

• In condensed matter
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• Quantum Mechanics

• String theory (orbifolds)

There is a complete classification of all simple groups:

4 infinite series:

1. cyclic groups of prime order,

2. alternating groups of order >5.

3. Lie groups of finite fields.

4. Tits groups.

There are also 26 sporadic cases. The most complicated one is the Monster .

Order |M |= 246 · 320 · 59 · 76 · 112 · 133 ·
 · 71≈ 1055. Found by Griess in 1982. This group can be
understood from the Leech lattice: in 24 dimensions: has 196883 nearest neighbours in the solid-
state meaning. The automorphism group of this is related to the Monster. (This can be done in
Conformal Field Theory and String theory.)

Chapter 2: Representations and characters.

Similarity transformations:

Γi(A)→Γi
′(A)=S−1ΓiS

then ΓiΓj=Γk ⇒ Γi
′Γj

′ =Γk
′

Then the representations Γ and Γ′ are called equivalent . Also: If Γ(1) and Γ(2) are two representa-
tions, then of course

(

Γ(1) 0

0 Γ(2)

)

is also a representation. But this representation is fully reducible.

Note:

S−1

(

Γ(1) 0

0 Γ(2)

)

S

can look very complicated in a general basis. That makes it hard to see that the representation is
reducible.

If a general representation Γ can at best be brought to the form

(

Γ′ Γ′′

0 Γ′′′

)

then it is called reducible. If no simplifying basis exists then it is irreducible. The irreducible
representations are the building blocks that we are normally interested in.

Question: How can we tell if a given representation Γ is irreducible or not?

Answer: Start by classifying all possible irreducible representations of the group.
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Suppose

Γ=S−1

(

Γ′ 0
0 Γ′′

)

S

The character is independent of the basis (independent of S). The charaacter is a set of g numbers

(i= representation) χ(i)=
{

χ(i)(E), χ(i)(A2),	 , χ(i)(Ag)
}

.

R∈G: χ(i)(R)=Tr
(

Γ(i)(R)
)

Comment: D3: we know 4 different representations already {1}, {1, −1}, {2 × 2 matrices}, {3 ×
3matrices}.
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