
2011–12–20 Lecturer: Bengt E W Nilsson

Three parts in this course: finite groups, infinite groups, and Lie algebras. Finite groups: can be
used to solve polynomial equations. We can prove that it is possible to solve all quartic and cubic
equations, and that there is no general solution to fifth-order polynomial equations — prove it,
using finite groups.

Definition: Group G, elements gi∈G. Axioms:

1. Closure under composition. (An abstract operation you can do with the elements.)

2. Associativity.

3. ∃ a (unique) unit element e.

4. ∃ an inverse g−1 for any g ∈G. (The inverse is also unique.)

Recall: SL(2,Z) means:
(

a b

c d

)

, a, b, c, d∈Z, det(g)= 1.

The S of SL(2,Z) means det (g)= 1; the L means matrix, the 2 of SL(2,Z) means 2× 2 matrices,
and Z is the integers.

Closure: yes. Associativity: naturally. Unit element: unit matrix. What about inverse? Works too.

Example: Z under multiplication? Not a group. (The inverse of 2, for instance, is not an integer.)

Example: Z under addition? OK.

Example: N∗=Z+? Not a group.

Example: SU(2). This describes spin in quantum mechanics. This is a continuous group:

(

a b

c d

)

, a, b, c, d∈C, U †U =1, det(U)= 1.

Claim:

U =

(

a b

−b̄ ā

)

, with det (U)= a ā + bb̄ =1.

Then

U †=

(

ā −b

b̄ a

)

⇒ U †U =

(

ā −b

b̄ a

)(

a b

−b̄ ā

)

=

(

1 0
0 1

)

.

Check U1U2≡U3∈SU(2) for anyU1 and U2: OK!

Put
{

a= x1+ ix2

b= x3+ ix4
, then det(U)= 1� x1

2+ x2
2+ x3

2+x4
2=1.

This is the equation for the three-sphere S3 embedded in R4. So SU(2) ≈ S3. This group is a
manifold. In this case SU(2) is connected : you can go from any point to any other by a path; and
simply connected: any loop is contractible to a point.
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(Compare loops on a torus: some loops are contractible,
but there are loops that are not contractible — not
simply connected.)

Example: SU(2) is related to SO(3), which is the group of rotations in R3. SU(2) ≈ S3, but

SO(3)≈RP3 is like a half-sphere with opposite points identified. RP3 is not simply connected.

Figure 1. A non-trivial loop. But if you go through it twice, the loop is trivial.

Exercise: Show this!

Example: U(1): u∈C such that |u|=1⇒ u=eiθ.

u1u2=eiθ1 eiθ2=ei(θ1+θ2)=eiθ3= u3.

The composition is multiplication. The addition of these ui’s is not in the group. (Not a group
under addition: not a vector space). In the exponents, you can add the θi’s, however.

Example: q ∈ SU(2): q= unit element in H, in the sense
∑

i
qi
2=1:

q= q0+ q1 i + q2 j+q3 k:

i, j, k: i2= j2=k2=−1, i j=k (cyclic i j k), i j=−ji.

Note: In Cartan’s classification of Lie groups: An, Bn, Cn, Dn	
A1: SO(3), SU(2), SL(2,R), SL(2,C)

These groups are really the same, if you allow the coefficients to be generally complex.

SL(2,C)≈SO(1, 3).

A2: SU(3), SL(3,R),	
Finite groups
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We will introduce in this context a number of theorems and concepts that have general use in the
whole subject. Some will seem very specialised to finite groups, but will come back in everything
we do later too. We start by considering an example D3 (the finite group, not to be confused with
the D3 of the Cartan classification above).

D3= {E,A,B,C ,D, F }

where E is the unit element. The order |D3|=6 is the number of elements. We need a multiplication
table:

i\j E A B C D F

E E A B C D F

A A E D F B C

B B F E D C A

C C D F E A B

D D C A B F E

F F B C A E D

Entry ij is given by gij= gi · gj.

Example: AB=D� BA=F .

This implies that D3 is non-abelian.

Definition: Abelian means gi · gj = gj · gi for all gi, gj ∈ G. (Named after the Norwegian
mathematician Niels Henrik Abel — look him up on Wikipedia.)

The table satisfies associativity , which constrains the table a lot. (You can’t just dream up any
old multiplication table and still satisfy associativity.)

Exercise: D3 is generated by two (non-trivial) elements (called generators). Show this!

This is the abstract, formal definition of D3. The abstract group D3 can be realized in many ways:

1. As symmetry operations on an equilateral triangle.

Figure 2. A,B,C are space-fixed axes. 1,2,3 are triangle-fixed corners.

Operations: flips around A, B, C and rotations in the plane by
2π

3
(operation D) and −

2π

3

(operation F ). I get back the triangle in the same orientation, but the corners will have
moved.

Composition: AB means do first B, then A.
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Figure 3. AB=D

So: Two flips is a rotation. One flip and one rotation is a flip, and two rotations is a rotation.

Exercise: Explain this!

2. Matrix realisation. This we call a representation. When we say representation in this course,
we mean a group in terms of matrices.

E=

(

1 0
0 1

)

, A=

(

1 0
0 −1

)

, B=





−
1

2

3
√

2
3

√

2

1

2



,

C =





−
1

2
−

3
√

2

−
3

√

2

1

2



, D=





−
1

2

3
√

2

−
3

√

2
−

1

2



, F =





−
1

2
−

3
√

2
3

√

2
−

1

2



.

Check: AB=D: OK.

Note: Also E=D=F =1, A=B=C =−1 is a representation! What do we mean by this? If you
plug it into the multiplication table it is satisfied. Even all gi=1 works.

Question: Can we find all representations? All matrix relizations of this group?

Definition: If all elements are distinct, then the representation is called faithful.

Definition: Isomorphic: one-to-one map.

Example: The abstract D3 is isomorphic to the 2× 2 matrix and triangle operations above.

Defintion: If the map is not one-to-one, it is homomorphic. Examples {−1, 1} and {1}.

Definition: A representation is a map Γ from the abstract group into matrices, such that
Γ(A) Γ(B) =Γ(AB) and all group axioms.

Theorem: Rearrangement theorem.

Note: Just saying that multiplying all elements by any given element gives back all elements once.

Proof: Fix Ak, then the set of elements EAk, A1Ak, A2Ak,	 , A|G|Ak will contain any element in
G — pick any Ai and for it to appear we use Ar such that ArAk = Ai. Can this always be done

for arbitrary Ai and a fixed Ak? It is always possible — just use Ar=AiAk
−1∈G.
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⇒ Any element will occur. ⇒Each element occurs once. �

Implication: Any subset of n different elements will map under multiplication by an arbitrary
element, to n different elements (not in general the same as in the first subset).

Definition: If a subset H of G satisfies the group axioms, it is called a subgroup.

Example: Any element x ∈G generates a cyclic subgroup: {x, x2, x3,	 , xn=E} where n is the
order of the subgroup, which is abeliean.

D3: x=A: {A,A2=E}. Here n=2.

x=D: {D,D2=F ,D3=E}. Here n=3.

Cosets

Let H = {E, B2, B3,	 , Bh=|H |} be a subgroup of G= {E, A2, A3, 	 , Ag=|G|}. Then Hx for any

given x∈G is the set {Ex,B2x,	 , BhX} is a right coset.

Now, if x ∈H then H x=H , according to the rearrangement theorem for H , but if x � H , then
Hx is not a group, since E is not in Hx. In fact H and Hx are disjoint as sets if x � H .

Proof. Assume the opposite. Bi∈H , x � H , Bj ∈H . Bi x=Bj.

But then x=Bi
−1Bj ∈H . Contradiction! �

Thus: Two cosets Hx1 and Hx2 are either identical as sets or disjoint.

Proof. A common element exists: Bi x=Bj y⇒Bi(x y−1) =Bj⇒ x y−1∈H ⇒H(x y−1) =H ⇒
Hx=Hy. So if one common element exists, then the two cosets are identical. �

Hence: G can be divided into a set of disjoint sets.

Figure 4.

So G=H ∪Hx1∪
 ∪Hxl where l ∈Z. This means that g= h l. Lagrange’s theorem. l is called
the index of H in G.

If |G|= g is prime, you cannot split it into subgroup.

Example: order =6=3× 2.

1. subgroup with h=3, l=2.

2. subgroup with h=2, l=3.
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Classes and invariant subgroups

Two elements A and B in G are conjugate to each other if A=XBX−1 for some X ∈G.

If A is conjugate to B and B to C, then A is conjugate to C.

All mutually conjugate elements belong to a set, called a class. And the group G can hence be
divided into a number of disjoint classes.

Exercise: Why is the rearrangement theorem not useful here?

Denote classes by Ci and thus G=
⋃

i
Ci. But also Ci Cj=

∑

k
cij

kCk.

Example: D3:

C1= {E}, C2= {A,B,C}, C3= {D,F }.

A=XBX−1 for some X ∈G.

Now consider: Invariant subgroups.

Definition: A subset H such that H is a group and x H x−1=H for all x∈G is called an invariant

subgroup (also called normal subgroup and normal divisor).

H consists of a set of complete classes.

Definition: G is simple if the only invariant subgroups of G is {E} and G itself.

Definition: Factor group: ={elements= cosets on an invariant subgroup H}=G/H . It is a group
if H is invariant.
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