
2009–12–09 Lecturer: Bengt E W Nilsson

Fuchs and Schweigert, chapter 7:

Simple and affine Lie algebras

We want to classify simple Lie algebras.

Recall the structure of a general Lie algebra (finite-dimensional).

g1⊕ g2⊕
�
semi-simple

⊕ gabelian ⊕ gnilpotent

g1 is simple.

Figure 1.

The classification of simple Lie algebras is done here using the Cartan matrix. This will then
give us all possible root systems. We use the Chevalley basis:

Φs(g)=
{

α(i): i = 1,	 , r = rank
}

Φ(g)= all roots

Theorem: Φs uniquely gives the Lie algebra g(Φs).

Proof: By actual construction.

Starting point: The Chevalley–Serre relations: (r = rank)

• 3 r generators {Hi, E±
i : i = 1, 	 , r}. Sometimes you call them {hi, ei, f i}. The 3r generators

satisfy:

i)

[

Hi, H j
]

=0: Cartan sub-algebra (CSA)

ii)
[

Hi, E±

j
]

=±AjiE±

j ,
[

E+
i , E−

j
]

= δijHi

This (ii) defines a number of sl(2, R) sub-algebras, one for each i.

iii) The Serre relations (multi-commutators).

(

adE±
i

)1−Aji

E±

j = 0

That is,
[

E±
i ,

[

E±
i ,	 ,

[

E±
i
[

E±
i , E±

j
]]	 ]]�

number of commutators: 1−Aji

= 0

The root string from E±

j along the direction E±
i has 1 − Aji nodes. This is called a presentation

modulo relation . So Aij is the only information used.

7.2. The Cartan matrix
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Recall

Aij =
2
(

α(i), α(j)
)

(

a(j), a(j)
) ≡

(

α(i), α̌(j)
)

Note: we change to the notation of Fuchs and Schweigert: α(i) ·κ α(j)≡ (α(i), α(j)).

Comment: If Aij can be made block diagonal by renaming the α(i)’s then the algebra is not
simple.

Properties of the Cartan matrix:

• ∀i: Aii = 2, no sum over i. (You can always arrange it in this way.)

• If Aij = 0 (i� j) then also Aji = 0, from the definition.

• Aij ∈Z
(60) for i� j.

Proof of the last point:

Consider a root string for any two roots (i.e. not only simple ones): I enumerates all roots

{

α(I) + mα(J): m =−n−,−n−+ 1,	 , n+− 1, n+: n−∈N+, n+∈N+
}

Here n− and n+ are finite integers since this root string is in some representation of an sl(2, R)
sub-algebra.

⇒ dimension of the representation= n+ + n−+1 =Λ + 1

Then since Λlowest weight =−Λheighest weight.

(N, N − 2,	 ,−N → dim= N + 1)

Taking the scalar product with α̌(j).

⇒
(

α(I)−n−α(J), α̌(J)
)

=−
(

α(I) +n+α(J), α̌(J)
)

⇒ 2
(

α(I), α̌(J)
)

= (n−−n+)
(

α(J), α̌(J)
)

Now consider simple roots only:
(

α(j), α̌(j)
)

=Ajj =2.

(

α(i), α̌(j)
)

= n−−n+∈Z

Also

if
(

α(i), α̌(j)
)

> 0 ⇒ n−> n+ > 0

and if
(

α(i), α̌(j)
)

< 0 ⇒ n+ >n−> 0

Now we know that α(i) − α(j) is never a root. ⇒ n− = 0 ⇒ first case is not possible. Thus
(

α(i),

α̌(j) 6 0
)

⇒Aij 6 0 for i� j.
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Let us now use this result a little bit more generally:

Let Aij be a generalised Cartan matrix; generalised in the sense that there is no condition on
detA.

A2: det

(

2 − 1
− 1 2

)

=3

B2: det

(

2 − 2
− 1 2

)

=2

G2: det

(

2 − 3
− 1 2

)

=1

• Aii = 2.

• Aij = 0⇔Aji = 0, i� j.

• Aij ∈Z(60), i� j

• detA:

a) > 0⇒ finite-dimensional,

b) = 0⇒ affine: infinite-dimensional algebra.

c) < 0⇒ hyperbolic (Lorentzian futher down here).

Aij is symmetrisable: We might put Aij→ (α(i), α(j))= κ
ij symmetric.

With detκ > 0⇒Euclidean signature.

In particular, when detκ = 0 we get degenerate signature.

When detκ < 0⇒Lorentzian signature.

Consider now case (a), the finite-dimensional ones. Consider two vectors, α, β. The scalar pro-

duct: α× β = cos θ (α, α) (β, β)
√

.

(

α, β̌
)

= 2 cos θ
(α, α)

(β, β)

√

(

α, β̌
)

(α̌ , β)= 4 cos2θ 6 4

i.e. α = α(i), β =α(j).

AijAji∈ {0, 1, 2, 3, 4}

For the value 4, cos2θ = 1⇒ cos θ = ± 1. θ ∈ {0, π}⇒ α(i) =± α(j). The roots are the same, they
don’t span the root diagram.

For the other values:

1)

0⇒Aij = Aji =0 ⇒









2
2









2) Aij = Aji =− 1⇒ θ =2π/3.

3) Aij =− 1, Aji =− 2⇒ θ = 3π/4.
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4) Aij =− 1, Aji =− 3⇒ θ = 5π/6.

We have all rank 2. How do we find higher rank ones?

Rank 3.

Aij =







2 α β

α

β Ã2







where Ã2 is rank 2 (one of them).

Useful formula:
(

A B

C D

)

=

(

A BD−1

C 1

)(

1 0
0 D

)

det

(

A B

C D

)

= det
(

A−B D−1C
)

detD

So a finite dim rank 3 must have detA3
ij

> 0.

Consider now an infinite-dimensional algebra:

Aij =

(

2 − 2
− 2 2

)

, detA= 0.

This is the affine Lie algebra called A1
(1). The subscript is the starting finite-dimensional Lie

algebra. The superscript in brackets is the type of affinisation: (1), (2) or (3).

CSA = {H0, H1}. H0 is the new affine CSA element.

[H0, H1] = 0

[

E+
0 , E−

0
]

=H0,
[

E+
1 , E−

1
]

= H1

[

H0, E±
0

]

=± 2E±
0 ,

[

H1, E±
1

]

=± 2E±
1

etc from Aij.

Serre relations:

0 =
[

E±
1 ,

[

E±
1 ,

[

E±
1 , E±

0
]]]

and the same for 1 and 2 interchanged. We will draw the roots as follows.

Figure 2. α(1)
≡α, α(0)

= δ −α

Serre:










α(0)

α(0) + α(1) = δ

α(0) + 2α(1) = δ + α

α0 + 3α(1) = δ +2α not a root, by Serre
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Figure 3. Never stops, up- or downwards.

⇒Φ(A1
(1)

) = {±α + n δ: n∈Z}∪ {nδ: n∈Z \ {0}}

(Only roots. The origin is just {H0, H1}.)

How for a general Cartan matrix can we see if it can be made block diagonaly by renaming the
roots?

Example:




2 − 2 − 1

− 1 2 0
− 1 0 2





Is this the same as the following?




2 − 1 − 2

− 1 2 0
− 1 0 2





Yes. (2↔ 3)

Can we design a method that makes this obvious? That is the Dynkin diagram.

Rules:

— Each simple root α(i) gives a node. ◦

— i) Aij = Aji =− 1 connects two nodes with one line. i� ⊸ j

ii) Aij =− 1, Aji =− 2 gives i ◦=⇐◦ j. There is a direction in this case:

Aij =
2
(

α(i), α(j)
)

(

α(j), α(j)
) =− 1

Aji =
2
(

α(j), α(i)
)

(

α(i), α(i)
) =− 2

⇒ 2=

(

α(j), α(j)
)

(

α(i), α(i)
) ⇒|α(j)|> |α(i)|

Figure 4.

7.4. Simple finite Lie algebras

Ar sl(r +1)

Br so(2 r + 1)

Cr sp(r)

Dr so(2 r)
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Figure 5.

These are called the classical ones. These are all realized by matrices: Then we have the excep-
tional ones:

E6, E7, E8. Then it stops. F4, G2.

Figure 6.

E8 manifold on the net.

Figure 7.
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