
2009–12–02 Lecturer: Bengt E W Nilsson

Recall:

α(1)

root diagram

α(2)
θ

gθ =
{[

E+
1 , E+

2
]}

= {E+
θ }

gα(1) =
{

E+
1
}

[

Hi, H j
]

= 0, i =1, 2 in the Cartan subalgebra

[

Hi, E±
j
]

=
(

α(j)
)i

E±
j

Root lattice = {n1 α(1) + n2 α(2)}, ni ∈Z.

α(i) ·α(j) = Aij =

(

2 − 1
− 1 2

)

Weight lattice = dual lattice of the roots = {m1 Λ(1) +m2 Λ(2)}, mi∈Z and Λ(i) ·α(j) = δi
j.

Λ(i) ·Λ(j) = Aij , whereAijA
jk = δi

k (this is just notation!)

Also

α(i) = AijΛ(j)

Λ(i) are the fundamental weights.

θ = Λ(1) + Λ(2) =α(1) + α(2)

Representation theory: Start from a highest weight state vΛ (or vector in the module, which we
normally just call representation, because we are sloppy).

HivΛ =Λi vΛ

Λi = linear combination of Λ(i)

θ = Λ(1) + Λ(2) is the heighest weight.
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Heighest weight state means that E+
i vΛ =0.

State space:

E−
i vΛ E−

i E−
j vΛ

weights: Λ−α(i) Λ−α(i)−α(j)

Dynkin labels = (p, q) means that the heighest weight is p Λ(1) + q Λ(2) where p, q are non-neg-
ative integers.

Read sections 11.1–11.3 in the book.

Unitarity of sl(3,R) and su(3).

Note: sl(3,R) .complexify
sl(3,C)

→ sl(3,R) non-compact (split)
→ su(3) compact
→ su(2, 1) non-compact

.

Recall the generators of sl(3,C)≡A2 (Cartan classification).

H1 =





1
− 1

0



, H2 =	
E+

1 =





0 1 0


, E−
1 =





0
1
0



, etc

1) For su(3) we need hermitian combinations Hi (ok), E+
i + E−

i (hermitian), i(E+
i − E−

i ) (her-
mitian). ⇒All unitary representations of su(3).

su(3): all representations are finite dimensional and unitary.

2) sl(3, R). Finite dimensional representations: never unitary. Infinite dimensional representa-
tions: all known, and come in two classes: unitary ones, and non-unitary ones. The unitary ones
are highest weight representations, but no lowest weight state exists. The non-unitary ones can
be highest-weight representations, and non-highest-weight representations.

Levi’s theorem about Lie algebras

A general Lie algebra can be decomposed as

g = V−
compact⊕V+

non-compact�
semi-simple part

⊕�
direct
or

semi-
direct
sum

V0
abelian ⊕V0

nilpotent�
maximal solvable

(the radical)

=

= g1�
simple

⊕ g2�
simple

⊕
 







a α β γ

b δ 	
c 	

d









Example: Poincaré algebra = SO(3)⊕{translation}. [Λµν , pρ] = δρ[µpν].

Exercise: Analyse the Lie algebra





0 a ~

0 N a†

0 0 0



= a Xa + a†Xa† + ~X~ +N XN
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Compte the Killing form!

1) H=







2 0 0

0
0 0






. Lower right block: remove the corresponding operators.

2) Compute H again. H=0.

Chapter 6: General theory of Lie algebras and their representations.

(Read Fuchs and Schweigert chapters 4 and 5 — a number of definitions. Check direct sum ⊕ ,
Kronecker product × , tensor product ⊗ , section 5.6.)

Direct sum: AM = (Aµ, Am). AM has d = 10. Aµ has d = 4. Am has d = 6. 10= 4 + 6. For tensor
product we have d = d1× d2.

SO(N) vector representation
(

ΛMN
)

PQ
= δPQ

MN.

The goal of chapter 6 in Fuchs and Schweigert is to show that any simple Lie algebra can be
written in the form we wrote sl(3,R).

1) [Hi, H j] = 0, Hi∈ g0 (Cartan sub-algebra).

2) [Hi, E±
j ] =±AjiE±

j ⇒ root vectors as (α(j))i = Aji.

3) α(i) ·α(j) = Aij

4) tr(HiH j)= Aij

5) In fact also:

[

E+
1 ,
[

E+
1 , E+

2
]]�

root string

=0 ⇔
(

adE+
1

)1−A2 1
�=2

E+
2 =0

adx(y)= [x, y]

The Cartan matrix Aij determines the complete algebra!

Fuchs and Schweigert § 6.1: Cartan subalgebra

• maximal set of mutually commuting generators (Cartan subalgebra) g0≡ spanC{Hi|i = 1,	 , r}
where r is the rank. The span is over C: take any x∈ g0, T a∈ g (not g0):

[x, T a] = fxa
b T b

Diagonalisable.

[x, T a] = fxT a

Characteristic equation:

det((fx)a
b− fx δa

b )= 0

To be able to solve this in any case we must use an algebraically complete number field, like C

(not R).

But note: There is always the split case where the sl(2, R) subalgebras ⇒ roots are real and
even integers.

Remark: Characteristic equation → Cayley–Hamilton:

Mn + λ1M
n−1 + λ2 Mn−2 +
 + detM = 0
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λi’s are invariants, such as trM, trM2, (trM)2,	
Number of invariants is equal to the rank. These invariants are like Cassimir operators.

SU(2) Li. C2 = LiLi→ j(j − 1).

SU(3) C2 &C3→ (p, q).

Fuchs and Schweigert § 6.2: roots.

[

Hi, Ej
]

=
(

α(j)
)i

Ej .new notation [

Hi, Eα
]

= αiEα

h = hiH
i⇒ [h, y] = αy(h)y

roots ∈ g0
∗ (dual df g0).

Recall:

Hij→hiHijhj = h ·h = hi hj tr(H
iH j)

α(i) ·α(j) =(α(i))m(α(j))nHmn

Lie algebra:

g = g0⊕
(

⊕

α� 0

gα

)

Root system (diagram) = {all roots}=Φ(g)

§ 6.3 Killing form.

sl(2,R)

1) two-dimensional representation

H =

(

1 0
0 − 1

)

, E+ =

(

0 1
0 0

)

, E−=

(

0 0
1 0

)

T a = {H, E+, E−}

→Tr(T aT b)=





2 0 0
0 0 1
0 1 0





2) three-dimensional representation

H =





2 0 0
0 0 0
0 0 − 2



, E+ = 2
√




0 1 0
0 0 1
0 0 0



, E−= (E+)
T

Tr(T aT b)= 4





2 0 0
0 0 1
0 1 0





Definition of the Killing form in terms of the algebra, i.e. the structure constants:

H(T a, T b)≡ tr(adT a ◦ adT b) where adT a

(

T b
)

=
[

T a, T b
]

= fab
c T c
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So adT a ◦ adT b(T c)= adT a

(

f bc
d T d

)

= f bc
d fab

e T e. Definition:

tr (adT a ◦ adT b)= trc=e

(

f bc
d fad

e

)

(T a)
b
c =− fab

c adjoint representation.

H(T a, T b)= IadHab

Iad depends on the representation.

So

Hab≡ H(T a, T b)

Iad
=

H(T a, T b)

Irepr
(Ismall

rep

=1)

H(T a, T b): any representation.

Note: Hab is non-degenerate (detHab� 0) only if g is semi-simple.

Question: How can we tell if g is simple or semi-simple? That requires Dynkin diagrams.

Note: Hab is invariant under the Lie algebra itself.

Note: Hab is block diagonal in g0 and the rest











Hij 0

0 the
rest











§ 6.4. Properties of roots and root systems.

Nothing new.

§ 6.5. Structure constants in the Cartan–Weyl basis (refers to all generators and their commut-
ators).

[

Hi, H j
]

= 0, i= 1, 2,	 , rank

[

Hi, Eα
]

=αiEα, α∈Φ

⇒
[

H1,
[

E+
α, E+

β
]]

=
(

αi + βi
)

[ · , · ]

1) αi + bi� 0 i.e. α + β ∈Φ.

[

Eα, Eβ
]

= eα,β Eα+β

2) α + β =0 (origin) ⇒Cartan subalgebra.
[

Eα, E−α
]

∼H ≡∑
i=1
rank

α̂iH
i

3) α + β � Φ⇒
[

Eα, Eβ
]

= 0.

Fuchs and Schweigert 6.6 and 6.7

g = g+⊕ g0⊕ g−

raising operator (upper triangular), Cartan subalgebra (diagonal), lowering (lower triangular).

Definition: Simple roots.
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Example: A2: α
(1), α(2) simple. θ not simple.

Simple roots are chosen such that

— They are positive roots

— All other positive roots are linear combinations with non-negative integral coefficients.

Implication: α(i)−α(j) is never a root if α(i) and α(j) are simple.

The rest of chapter 6 in Fuchs and Schweigert

To get the Chevally basis we use only the Cartan subalgebra and the simple roots, i.e. prove
that any simple Lie algebra can be described entirely by just teh Cartan matrix Aij.

Start.

[Hi, H j] = 0, i, j = 1,	 , rank

[

Hi, E±
j
]

=±
(

α(j)
)i

E±
j
,

tr
(

H iH j
)

= κ
ij

α(i) ·α(j) = Gij (withκ
−1 as metric)

Since we know that for some algebras (ex G2, B2) the roots have different length. ⇒ It will be

useful to normalise all roots to (length)2 = 2. Introduce coroots α̌(1) ≡ α(i)

c(i)
, where the c(i) are

just numbers. Then we use the coroots to define the weight lattice.

α̌(i) · α̌(j)�
with κ−1

= Ǧij

Λ(i) · α̌(j) = δi
j

Λ(i) ·Λ(j)�
with κ

= Ǧij

In fact we “know” from sl(3,R) that if we set κ = Ǧ and α̌ = rows of Ǧ, then

α̌(i) · α̌(j) = Ǧij

(

Ǧ
)(i)n(

Ǧ
)

nm

(

Ǧ(j)
)m

≡ Ǧ(i)(j)

That this is possible always follows from

H(i)≡H j
κjk

(

α̌(i)
)k

trH(i)H(j) =
(

trHkH l
)�

κkl

κkm

(

α̌(i)
)m

κln

(

α̌(j)
)n

= Ǧij

Step 2:

[

H(i), E±
j
]

=±
(

α(j)
)(i)

E±
j ≡

(

α(j)
)m

κmn

(

α̌(i)
)m

E±
j = α(j) · α̌(i)�

with κ

E±
j
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Note: in Fuchs and Schweigert:

α(i) · α̌(j)≡
(

α(i), α̌(j)
)

Step 3: Define the Cartan matrix

Aij ≡α(i) · α̌(j)

(not symmetric in general). It is symmetrisable →	
Step 4: We want all roots to have “(length)2 = 2” to relate them to sl(2,R) algebras.

⇒ α̌(i) =
2 α(i)

α(i) ·α(i)

Step 5:
[

E+
i , E−

j
]

=

This has root = α(i)−α(j), and this is never a root if i� j.

[

E+
i , E−

j
]

= δijHi

I choose coefficent = 1 by renormalising the E±
i .

Chevally basis (page ξ8 in FS)

[

Hi, H j
]

=0

[

Hi, E±
j
]

=±AjiE±
i

[

E+
i , E−

j
]

= δijHi

Serre relations:

(

adE±
i

)1−Aji

E±
j = 0
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