
2009–11–11 Lecturer: Bengt E W Nilsson

Now we are going to shift gear a bit, and go into what is called representation theory.

Chapter 5: Representation theory (You can read Fuchs and Schweigert chapters 2 and 3,
for the first part of this chapter here.)

Recall the angular momentum algebra in Quantum Mechanics:

L = q × p

This is in three dimensions, so

Li= εijk qj pk i.e. L1 = q2p3− q3p2

In Quantum Mechanics with operators [p̂i, q̂ j] = i δij, where we have put ~ = 1.

⇒
[

L̂
i
, L̂

j
]

= i εijk L̂k

SO(3) algebra (or SU(2)). The same algebra is obtained for the classical version using the
Poisson bracket [ · , · ]PB instead of the quantum mechanical commutator.

Note: The Witt algebra is the classical version of the Virasoro algebra. Here, when computing

the commutator [L̂m, L̂n] we get an answer that needs normal ordering. That leads to a “second”
commutator, which leads to the central term or anomaly (or c/12	 ).

Recall also that we have seen at least two other realizations of the angular momentum algebra.

[

T a, T b
]

= i εabcT c

We have seen SO(3) where the (T a)bc = − iεabc with a, b, c = 1, 2, 3 = x, y, z. This is the vector

represenation. We have also seen SU(2), where (T a)bc =
1

2
(σa)βγ with β, γ = 1, 2. This is the

spinor representation. Having found these representations can we derive or construct all possible
representations of this algebra?

(Sakurai →Ym
(l)

(θ, ϕ), l=1,m=− 1, 0,+1).

To find all representations (finite dimensional) we form

L±=L1± iL2, L0 = 2L3

⇒
{

[L0, L±] =± 2L±

[L+, L−=L0]

→ sl(2,R).

Comment: SO(3), SU(2) and sl(2, R) are isomorphic as complex Lie algebras (i.e. as complex
vector spaces), but not so if real vector spaces. So as complex vector space we denote this
algebra sl(2,C)≡A1 in Cartan’s classification.

Let us now view L0, L± as linear operators, i.e. matrices, acting on some d-dimensional vector
space (module). Then L0 will have at least one non-zero eigenvalue.

L0vλ=λ vλ

where λ is the eigenvalue, or weight , and vλ is the eigenvector, or state.
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Example: Spin
1

2
. (j=

1

2
).

Ja=
1

2
σa, σ1 =

(

0 1
1 0

)

, σ2 =

(

0 − i
i 0

)

, σ3 =

(

1 0
0 − 1

)

So we define new operators J0, J± as follows:

J0≡σ3 =

(

1 0
0 − 1

)

⇒ J0

(

1
0

)

=1

(

1
0

)

⇒ J0

(

0
1

)

= (− 1)

(

0
1

)

Step operators:










J+ = J1 + i J2 =
(

0 1
0 0

)

J−= J1− i J2 =
(

0 0
1 0

)











J+

(

1
0

)

= 0

J+

(

0
1

)

=
(

1
0

)

(Stepping up operator.)

We want to generalise this to any possible dimension d (d= 2 above).

But then L±vλ is also an eigenvector of L0.

L0(L±vλ) = (λ± 2)(L±vλ)

Check: L0(L+vλ)=L+L0vλ+ [L0, L+]vλ=L+λ vλ+2L+vλ=(λ+ 2)L+vλ.

This stepping procedure goes on until we have produced all the d vectors in the d-dimensional
vector space (because eigenvectors with different eigenvalues are linearly independent; compare
Quantum Mechanics).

Then it must stop at some eigenvalue Λ (λ-max), i.e. L+vΛ = 0.

Figure 1.

So we suppose it takes N steps to reach the lowest λ-value:

(L−)NvΛ = vΛ−2N

That this coefficient is one is a definition used for the now. If we do L−vΛ−2N = 0. vΛ−2N is
thte lowest weight state, while vΛ is the heighest weight state.

So defining the vector obtained using L− with coefficient one, L−vλ = vλ−2, then we can derive
the coefficient obtained using L+:

L+vΛ−2n=L+L−vΛ−2n+2 = [L+, L−]�
=L0

vΛ−2n+2 +L−L+vΛ−2n+2 = (L0 +L−L+)vΛ−2n+2

We define the coefficent rn by L+vΛ−2n= rnvΛ−2n+2.

L+vΛ−2n=	 = (L0 +L−L+)vΛ−2n+2 =(Λ− 2n+ 2+ rn−1)vΛ−2n+2

⇒ rn= rn−1 + Λ− 2n+2
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defined rn, n= 0, 1, 2,	 To solve this we need a starting point. We use that L+vΛ = 0⇒ r0 =0.

n= 1: r1 = r0 + Λ = Λ.

rn=n(Λ−n+ 1)

Now we have two numbers describing the size of this representation, N and Λ. These can be
related as follows:

0 =L+L−vΛ−2N�
=0

=(L0 +L−L+)vΛ−2N = (rN + Λ− 2N)vΛ−2N

⇒ rN + Λ− 2N = 0

Λ = 2N − rN = 2N −N(Λ−N +1)

⇒ N 2 +(1−Λ)N −Λ= 0

⇒ N =− (1−Λ)

2
± 1 +Λ

2
= Λ (or − 1)

N = Λ.

They are the same thing, and we will not use N any more. The dimension of the representation
is d=N +1 = Λ+ 1.

Heighest weight state vΛ, lowest weight state vΛ−2N = v−Λ.

Comment: In quantum mechanics we use the spin j as the parameter describing the size: λ =
2 j, since d= 2 j+ 1, j=0,

1

2
, 1,

3

2
,	 We have states |j ,m〉 with j acting as Λ and m as λ.

m is measured by L0, and j by the Casimir operator L2 =
(

L1
)2

+
(

L2
)2

+
(

L3
)2

which com-

mutes with L0 but does not belong to the Lie algebra so(3) or sl(2,R) — it is not linear in Li.

Recall (Quantum Mechanics) One is always interested in finding the maximal set of commuting
operators because they can be diagonalised at the same time.

Example: d=3 representation of sl(2,R): v2, v0, v−2

⇒H =





2 0 0
0 0 0
0 0 − 2





(Now we use H instead of L0). This is the notation for all commuting operators called Cartan

algebra. Also

F =





0 0 0
1 0 0
0 1 0





(Instead of L−) which is a stepping down, or lowering operator. Also called negative. [H,F ] =−
2F . Note

F 2 =





0 0 0
0 0 0
1 0 0





and the positive or raising operators

E= 2





0 1 0
0 0 1
0 0 0




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(Instead of L+)

Here

E





0
0
1



=Ev−2 = 2





0
1
0





In quantum mechanics it is standard to divide the rn coefficients between E’s and F ’s.

E= 2
√





0 1 0
0 0 1
0 0 0



, F = 2
√





0 0 0
1 0 0
0 1 0





Compare sl(3,R). Here we have H1, H2, E1, E2, F 1, F 2. [E1, E2] =Eθ∈ sl(3,R).

E1 =





0 1 0
0 0 0
0 0 0



, E2 =





0 0 0
0 0 1
0 0 0



 ⇒ Eθ=





0 0 1
0 0 0
0 0 0



∈ sl(3,R)

Exercise: Use [a†, a] = 1 to construct the sl(2,R) algebra.

The Lie algebra sl(3,R)

Physics: if we have two particles, like the proton and the neutron, that are rather similar, we
should construct a quantum field theory that is almost symmetric under rotations in the two-

dimensional complex space
(

ψn

ψp

)

. ⇒ SU(2)-symmetry, which is roughly sl(2,R).

But suppose that there are three similar objects, like quarks. Then we need rotations in





ψb
ψr
ψg





⇒ SU(3) or ∼ sl(3,R).

Try to combine two sl(2,R) algebras to get sl(3,R).

• First sl(2,R):
{

[

H1, E±
1

]

=± 2E±
1

[

E+
1 , E−

1
]

=H1
, E+

1 ≡E1, E−
1 ≡F 1

To get a second independent quantum number we need a second Cartan generator H2

[

H1, H2
]

= 0

i.e. reank = 2. (dimension of the space of commutating operators).

Now, if H2 commutes with also E±
1 and no E±

2 exists, then nothing happens, in the sense that
the eigenvalue of H2 is the same for all states.

So to get new, larger representations and algebras we need the full second sl(2,R).

{

[

H2, E±
2

]

=± 2E±
2

[

E+
2 , E−

2
]

=H2
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One possible case is that [sl1(2,R), sl2(2,R)] = 0. Then we get just the sum of two algebras not
talking to each other. g= g1⊕ g2. We have to do something non-trivial, with the E’s.

To get something really new we need some non-trivial commutators: mixing sl1(2, R) and sl2(2,
R):

[

Hi, E±
j
]

=±AjiE±
j (no sum over j)

with some Aji� 0 for i� j. So A21 and/or A12 � 0. Note: Aji need not be symmetric. Also note
A11 =A22 = 2 — that’s the two sl(2,R)’s.

Consider the other possible mixings of the two sl(2,R)’s:

{

[

E±
1 , E±

2
]

=E±
θ

[

E±
1 , E∓

2
]

“and here I will not write anything”

We can now compute the eigenvalues of these two new operators:

1)

[

Hi,
[

E±
1 , E±

2
]]

= [Jacobi] =−
[

E±
1 ,

[

E±
2 , Hi

]]

−
[

E±
2 ,

[

Hi, E±
1

]]

=

=−
[

E±
1 ,−A2iE±

2
]

−
[

E±
2 ,±A1iE±

1
]

=±
(

A2i+A1i
)[

E±
1 , E±

2
]�

≡E±
θ

2) also

[

Hi,
[

E±
1 , E∓

2
]]

=±
(

A1i−A2i
)

[ , ]
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