
2009–10–12 Lecturer: Bengt E W Nilsson

Example: Elementary particle physics.

The Standard Model (SM) of elementary particle physics and the Minimal Supersymmetric
Standard Model (MSSM).

Lepton. GSM = UY (1)×SUw(2)× SUc(3) – hypercharge, weak and colour

SU(2)× SU(3) singlets (eR)Y — non-zero hypercharge, (uR)Y , (dR)Y , etc for the families .

SU(2) doublet:

(

e

ν

)

L, Y

. L is left-handed, R is right-handed. SU(3) singlet.

SU(2) doublets:

(

u

d

)

L, Y

, SU(3) triplets.

In general we have fields with many indices.

Example: The up quark:

uαb→ eiαY (u2)α
β (u3)a

b uβb

u2∈SU(2), u3∈ SU(3). Plus a hidden index for the Lorentz representation.

Note: In general it is very important to be able to “multiply” representations: this we will do

later. Recall, in SU(2):
1

2
⊗

1

2
= 1⊕ 0.

Note: Matrices ∈ G are in some representation of the group, but the fields correspond to the
vector space these matrices act on, called modules. In phyisics we refer to both representations
and modules as representations.

We will now define general classes of groups by generalising SU(2) and SO(3) matrices: these are
called matrix groups. They provide almost all finite dimensional groups; the other ones (see
later) are called exceptional groups. (Read FS section 9.7.)

We start by considering completely general n×n matrices.

A=











a1
1 a1

2 
 a1
n

a2
1�

an
1 
 an

n











, with ai
j ∈R

Using matrix multiplication A ·B = C reads

(A ·B)
i
j =

∑

k

ai
k bk

j = ci
j

we see that we get a group from all such matrices provided det A � 0. So A ∈ GL(n, R) if
detA� 0.

Recall

detA =
∑

i1,	 ,in

j1,	 ,jn

1

n!
εi1	 inai1

j1
 ain

jn εj1	 jn

εi1
 in (and εi1	 in
) are totally antisymmetric with ε12
n = + 1. Normally we simplify this a bit,

doing the sum over j:

detA=
∑

i1
 in

εi1
 in ai1
1 ai2

2 
 ain

n
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Exercise: Write out detA for n= 5.

Then detA� 0⇒A−1 exists, since

A−1 =
1

detA

( 
 
� 
 )

Now we can use instead other kinds of “numbers”.ng For instance let zi
j ∈C.

A=







z1
1 
 z1

n� 
 �
zn

1 
 zn
n







In fact we can also use (FS p. 48), H (quaternions), or some finite field (in the mathematical
sense) like Zp.

H has three units i, j , k with i2 = j2 = k2 =− 1, ij = k. In effect (i, j , k) = i σi (Pauli matrices).

q ∈H q = a + b i + c j + d k, a, b, c, d∈R

We get groups like GL(n,H), and GL(n,Zp). Zp = {0, 1, 2,	 , p− 1}, Zmod p.

Read FS page 48, about rings and fields.

Z s not a field, and thus not good in GL(n,Z).

We get special linear groups by setting detA =1.

⇒ SL(n,R), SL(n,C), SL(n,H)

(Can’t use octonions, since groups are defined to be associative.)

Division algebras (FS page 71–73): R,C,H,O. In O we have seven complex units, e1,	 , e7.

Note: There are two other sub-Lie groups that can easily be identified. sol(n) (solvable). A solv-
able matrix is a special matrix ton the form

S =











s1
1 s1

2 
 sn
n

0 s2
2 � 0

0 0 

0 0 0 sn

n











nil(n): nilpotent:

n =













1
0 1 � 0
0 0 1
0 0 0 

0 0 0 0 1













Physics:

n1 =





1 a b

0 1 c

0 0 1



, n2 =





1 α β

0 1 γ

0 0 1





⇒n3 = n1n2 =





1 α + a β + b+ aγ

0 1 γ + c

0 0 1




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This example is called the Heisenberg group and is related to the harmonic oscillator operators

a, a†, ~ and to p, q, ~.

Another set of subgroups of GL(n,F) for some field F (R,C,H,	 )

Orthogonal groups O(n,F).

O(n,R): R∈GL(n,R) such that G =1 is invariant, i.e. RT G R = G ⇒ RTR = 1

O(p, q;R): G=

(

1p 0
0 − 1q

)

≡ 1(p,q), RT GR =G

U(n)⊂GL(n,C) such that U †GU = G, G =1. U(p, q) has G= 1(p,q).

Symplectic: Sp(2n,R), Sp(2n,C)

M ∈ Sp(2n,R) if MTJ M = J where J =

(

0 1n×n

−1n×n 0

)

Note: Sp(2n,R) can be related to GL(n,H).

Next: we note a theorem.

Theorem: H1⊂G, H2⊂G then also H1∩H2 is a subgroup of G.

Then we define groups like

SO(p, q)=O(p, q)∩SL(p + q,R)

SO(p, q) has both conditions: AT
1(p,q)A= 1(p,q) and detA =1.

SU(p, q)= U(p, q)∩SL(p + q,C)

Example: SU(1, 1). U ∈SL(2,C) if

U =

(

a b

c d

)

, with a, b, c, d∈C, a d− b c = 1

and

U †
1(1,1)U = 1(1,1)

(

a∗ c∗

b∗ d∗

)(

1 0
0 − 1

)(

a b

c d

)

=

(

1 0
0 − 1

)

⇒

(

|a|2− |c|2 a∗b− c∗d	 	 )

=

(

1 0
0 − 1

)

⇒ U =

(

a b

b∗ a∗

)

with |a|2 + |b|2 =1∼ hyperbolic space. Exercise: Show this.

(Recall SU(2): U =
(

a b

− b∗ a∗

)

, |a|2 + |b|2∼S3.
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Comments: The dimension of these groups can be determined: dim = number of real para-
meters.

GL(n,R) number= n2

SL(n,R) number= n2− 1

GL(n,C) number= 2n2

SL(n,C) number= 2n2− 2

SO(n) number= n2−
n(n+ 1)

2
=

n(n− 1)

2
SU(n) number= 2n2 −n2�

from
U †U=1

− 1�
det

=n2− 1

SU(2) number= 3 (quantum mechanics)
SU(3) number= 8 (gluons in the Standard Model)
SL(2,C) number= 6 (is actually related to SO(1,3))

Example: GL(n,C) has an invariant subgroup, namely SL(n,C). Exercise: show this.

Note: The concepts from finite group theory appear also in Lie group theory:

Definition: subgroup H ⊂G.

Definition: proper subgroup H � {e}, H � G.

Definition: Invariant subgroup. h∈H, g ∈G⇒ g h g−1∈H , for all h, g.

Definition: G is simple if it has no proper invariant subgroups.

Definition: G is semi-simple if it has no abelian proper invariant subgroup.

We will later classify all Lie groups by classifying their Lie algebras. (next time)

Example: SU(n), SO(n), Sp(n,R), SL(n,R) are all simple, except SO(4).

• Topological properties.

Definition: A Lie group G is connected if all elements g ∈ G are continuously related.
Example: SO(3) is connected, but O(3) is not connected, because det = + 1 and det = − 1 are
not related — no continuous way to transform the one into the other.

Example: U(2) and SU(2)∼S3 are both connected.

Definition: A Lie group is compact if all elements in the matrix take values in finite ranges.

Example: U(1): U †U =1⇒|ai
j |6 1. Exercise: Show this.

Example: SO(1, 3) is not compact.

Λµ
ν =









γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1









, detΛ = γ2
(

1− β2
)

=1

and here

γ =
1

1−
v2

c2

√ , β =
v

c
, − c 6 v 6 c

Example: SU(1, 1)

U =

(

a b

b∗ a∗

)

|a|2− |b|2 = 1 not compact.
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Example: SL(2,R)

A =

(

a b

c d

)

, ad− bc = 1

not compact.

• Cosets

If H ⊂G, then G/H is a “coset space”.

Example: SO(8)/SO(7) ≈ S7 (7-dimensional sphere). SO(n)/SO(n − 1) ≈ Sn. These Sn are not
groups, in general.

If H is an invariant (normal) subgroup then G/H = group. Example:

SO(4)/SO(3)≈S3≈ SU(2)

Comments: SO(8)/SO(7) ∼ S7 is not a group, but almost. (This has to do with octonions. S7 is
a very curios object, very close to being a group.)

o= a0 + a1e1 +
 + a7e7: |o|2 = 1⇔S7

C: |z |2 = 1 ⇔ S1∼U(1)

H:
∑

i=0

3

|ei|
2 =1 ⇔ S3∼SU(2)

These coset spaces are crucial in Kaluza–Klein theories where one compactifies sometimes on
coset spaces.

Example: In supergravity in 11 dimensions: One can compactify

M11 = M4�
space-
time

×S7

⇒ a spacetime theory with gravity and an SO(8) gauge theory.

Centre

Recall the relation between SU(2) ∼ S3 and SO(3) ∼ RP 3. This is related to the centre Z2 of
SU(2). In general SU(N) has a number of elements gn ∈ SU(N) that commute with all g ∈
SU(N).

gn = e
2πi

n

N 1, n = 0, 1,	 , N − 1

This set of elements is called the centre ZN = {gn} of the Lie group SU(N).

Note: SU(N)/Zn is still a group since ZN is an invariant subgroup.

Example: SU(2)/Z2≈SO(3).

Figure 1.

Dividing out Zn turns the simply connected SU(N) into a multiply connected subgroup.

The simply connected group is called the universal covering group of the others.
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Note: Groups with different names can (in low dimensions) be the same!

Example: SL(2,R) and Sp(2,R):

A∈ SL(2,R): A=

(

a b

c d

)

, ad− bc = 1

A∈Sp(2,R): ATJ AT = J , J =

(

0 1
− 1 0

)

⇒

(

0 ad− bc

bc− ad 0

)

=

(

0 1
− 1 0

)

⇒ ad− bc = 1

These were equivalent groups.

Example: Centre constructions

SO(N) has non-trivial cycles (π1(SO(N))=Z2). Introduce Spin(N) as

Spin(N)/Z2 = SO(N)

Example: N = 3: Spin(3)=SU(2).

N = 4: Spin(4)= SU(2)× SU(2).

N = 5: Spin(5)= Sp(4,R)

N = 6: Spin(6)= SU(4).

All Spin(N) for N > 6 are not related to other groups.
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