2009 - 10 - 05

Quantum Mechanics (See the Tinkham book.)

In Quantum Mechanics we define the physics of a system by giving the Hamiltonian. For example, the hydrogen atom (electron and proton at the origin):

$$H=\frac{\boldsymbol{p}^2}{2m}+V(r),\quad\text{in this case with }V(r)=-\frac{e^2}{r}=-\frac{e^2}{\sqrt{x^2+y^2+z^2}}.$$

This leads to the Schrödinger equation (time-independent):

$$H\psi_n(\mathbf{r}) = E_n\psi(\mathbf{r})$$

with $\mathbf{r} = (x, y, z)$ and \hat{H} is the quantised Hamiltonian:

$$\hat{H}=-\frac{\hbar^2}{2m}\,\nabla^2+V(r)$$

 E_n is the eigenvalue of ψ_n . The symmetry is O(3) (more later today). To relate to finite groups we consider instead a 3-proton situation ("molecular").

Figure 1. Three protons, and an electron moving around in the potential created by them.

The electron in the field from these three protons moves in a complicated potential. But without solving the problem explicitly we can say quite a lot about the problem using the finite group D_3 which is the symmetry group of the three proton "molecule".

Introduce an operator \hat{P}_R corresponding to some symmetry operation of the triangle. Being a symmetry operation we must have

$$\hat{P}_R \hat{H} = \hat{H} \hat{P}_R,$$

i.e. \hat{P}_R commutes with \hat{H} .

$$\hat{H}\left(\hat{P}_{R}\psi_{n}\right) = E_{n}\left(\hat{P}_{R}\psi_{n}\right)$$

So $\hat{P}_R \psi_n$ is a new wave function with the same eigenvalue as ψ_n .

Recalling the Wigner definition of \hat{P}_R :

$$\hat{P}_R\psi_n(\boldsymbol{r}) \equiv \psi_n(R^{-1}(\boldsymbol{r}))$$

(i.e. $\hat{P}_R \psi(R(\mathbf{r})) = \psi(\mathbf{r})$). Compare $\mathbf{r} = x \, \mathbf{e}_x + y \, \mathbf{e}_y + z \, \mathbf{e}_z$ or to quantum mechanics: $\psi(\mathbf{r}) = \langle \mathbf{r} | \psi \rangle$. $1 = R^{-1}R$.

This means that the eigenfunctions $(\psi_n(\mathbf{r})$'s) group themselves into irreducible representations of D_3 .

$$\hat{P}_R \psi_n^{(i)} = \sum_m \psi_m^{(i)} \Big(\Gamma^{(i)}(R) \Big)_{mn}$$

where (i) denotes one particular irreducible representation, and these l_i (dimension of the irreducible representation) wave functions all have eigenvalue E_n .

The *normal* situation then is that different irreducible representations have different eigenvalues. If not there is an *accidental degeneracy*.

Example: In the hydrogen atom the 2s and 2p states are degenerate. This degeneracy is lifted for hydrogen-like atoms.

Example: The cyclic group, C_h , of order h has elements $\{E, A, A^2, ..., A^{h-1}\}$ such that $A^h = E$. It is generated by one element A. These groups are *abelian* \Rightarrow each element gives a conjugacy class \Rightarrow there are h conjugacy classes and thus h different irreducible representations \Rightarrow all the irreducible representations are one-dimensional:

$$\sum_{i=1}^{h} (l_i)^2 = h \quad \Rightarrow \quad \text{all } l_i = 1$$
$$\Rightarrow \Gamma^{(i)} = e^{2\pi i r/h}, \quad r = 0, 1, \dots, h - 1, \quad \left(\Gamma^{(i)}\right)^h = 1$$

This implies Bloch's theorem in solid state:

Consider an electron in a one-dimensional periodic lattice with period $L = a \cdot h$ where a is the lattice spacing and h is the number of lattice sites.

$$\Rightarrow \quad \hat{P}_a \psi^{(r)}(x) = \psi^{(r)}(x+a) \mathop{\underset{\text{lattice}}{\overset{\text{cyclic}}{=}}} \psi^{(r)}(x) \, \mathrm{e}^{2\pi \mathrm{i} r/h}$$

 \hat{P}_a is the translation operator, distance a.~h steps goes back to origin.

$$\Rightarrow \quad \psi^{(r)}(x+a) = [L = a h] = e^{2\pi i r a/L} \psi^{(r)}(x) = [k = 2\pi r/L] = e^{ika} \psi^{(r)}(x)$$

This equation has the general solution:

$$\psi_k(x) = u_k(x) \,\mathrm{e}^{ikx}$$

where $u_k(x)$ is periodic with period a. This is Bloch's wave function.

Chapter 3 Continuous groups.

Recall the Schrödinger equation

$$\hat{H}\psi_n(\mathbf{r}) = E_n\psi_n(\mathbf{r})$$

This is rotationally invariant, i.e. has symmetry O(3):

$$\boldsymbol{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix}, \quad \boldsymbol{r} \to \boldsymbol{r}' = R \, \boldsymbol{r}, \quad \begin{pmatrix} x \\ y \\ z \end{pmatrix} \to \begin{pmatrix} x' \\ y' \\ z' \end{pmatrix} = \begin{pmatrix} R_{xx} & R_{xy} & \cdots \\ R_{yx} & \cdots \\ R_{zx} & \cdots \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$

or $x_i \to x'_i = \sum_j R_{ij} x_j$, i = 1, 2, 3. Using Einstein's summation convention: $x'_i = R_{ij} x_j$. Scalar product $r^2 = |\mathbf{r}|^2 = \mathbf{r}^T \mathbf{r} = x_i x_i = (x \ y \ z) \begin{pmatrix} x \\ y \\ z \end{pmatrix}$. Rotational invariance of r^2 means

$$(r')^2 = r^2$$

 $\Rightarrow (r')^2 = \mathbf{r}^T R^T R \mathbf{r} = \mathbf{r}^T r$

Invariance implies $R^T R = \mathbf{1} \Leftrightarrow R \in O(3)$, the orthogonal group in three dimensions. (Exercise: check group axioms.)

Note:

$$\left(R^{T}\right)_{ij}\left(R\right)_{jk} = \delta_{ik}$$

(sum over j implied)

$$(R)_{ii}R_{jk} = \delta_{ik}$$

(sum over j)

Now for i = k (no sum)

$$\sum_{j} (R_{ij})^2 = 1$$
$$|R_{ij}| \leqslant 1$$

All matrix elements in R are bounded by 1; i.e., the group is compact. So R can be expressed in terms of angles. How many angles? n dimensions, O(n). R has n^2 elements and $R^T R = 1$ gives n (n+1)/2 equations (since a symmetric equation).

R has $n^2 - n(n+1)/2 = n(n-1)/2$ elements.

Example: n = 3, number = 3. n = 4, number = 6.

The invariance of r^2 (and hence the group O(n)) can be described in terms of a tensor δ_{ij} . So invariance of r^2 is equivalent to δ_{ij} being an *invariant tensor*.

Introduce covariant and contravariant indices: x^i (covariant index) and x_i (contravariant index). Then we use as a definition (or input information) that $x^i \xrightarrow{R} x'^i = x^j R_j^{i}$. The position of indices is important. Then

$$x_i \stackrel{R}{\to} x_i' = \left(R^{-1}\right)_i^{j} x_j$$

In other words $x^i x_i$ is invariant without any restrictions on R. Any tensor $T_{ijk}{}^{lmnpq}$ will now rotate according to these rules.

$$T_{i\,j}{}^k \to T'_{i\,j}{}^k = \left(R^{-1}\right)_i{}^{i'} \left(R^{-1}\right)_j{}^{j'} T_{i'j}{}^{k'} R_{k'}{}^k$$

So this $x^i x_i$ is not a scalar product. It relates properties of dual vector spaces. Scalar products then relates to x in the same space:

 $r^2 = x^i \delta_{i\,i} x^j$

So in general (any R) will transform this δ_{ij} to

$$\delta_{ij}' = \left(R^{-1}\right)_{i}^{i'} \left(R^{-1}\right)_{j}^{j'} \delta_{i'j'}$$

but for $R \in O(3)$ we get $\delta'_{ij} = \delta_{ij}$, i.e. δ_{ij} is an O(3)-invariant tensor. Normally this is written

$$R_i^{i'}R_j^{j'}\delta_{i'j'} = \delta_{ij}$$

or in matrix notation

$$R \mathbf{1} R^T = \mathbf{1} \quad \Rightarrow \quad R R^T = \mathbf{1}$$

Another example is from quantum mechanics. The wave function of a spin $\frac{1}{2}$ part is

$$\chi = \begin{pmatrix} \chi_1(\boldsymbol{r}) \\ \chi_2(\boldsymbol{r}) \end{pmatrix}, \quad \chi_i \in \mathbb{C}$$

and "scalar" in quantum mechanics is $\chi^{\dagger}\chi$. Call these components z_i instead:

$$\boldsymbol{z}^{\dagger}\boldsymbol{z} = \left(\begin{array}{cc} z_1^* & z_2^* \end{array}\right) \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right) = |z_1|^2 + |z_2|^2$$

What is the invariant group?

$$\left(\begin{array}{c} z_1 \\ z_2 \end{array}\right) \rightarrow \left(\begin{array}{c} z_1' \\ z_2' \end{array}\right) = U \left(\begin{array}{c} z_1 \\ z_2 \end{array}\right)$$

where U is a 2×2 complex matrix.

$$U^{\dagger}U = 1 \quad \Leftrightarrow \quad U \in \mathrm{U}(2)$$

and in $z_i \in \mathbb{C}^n$: $U \in \mathrm{U}(n)$.

Note: $R \in O(3)$ then $R^T R = 1$. Take the determinant, and we have $(\det R)^2 = 1 \Rightarrow \det R = \pm 1$ and we define $R \in SO(3)$ if $\det R = +1$. (This property is conserved by matrix multiplication). \tilde{R} with $\det \tilde{R} = -1$ does not give a group.

So O(3) has two *components* (a *component* is the set of matrices R continuously related to each other).

OBS. Both O(3) and SO(3) has three continuous parameters.

Note: $U \in U(2)$ then $U^{\dagger}U = \mathbf{1} \Rightarrow \det U^* \det U = \mathbf{1} \Rightarrow \det U = e^{i\alpha}$. By defining SU(2) by $\det U = +1$ we see that $U(2) = U(1) \times SU(2)$. U(1) is the phase $\{e^{i\alpha}\}$. Going from U(2) to SU(2) eliminates one continuous parameter, unlike the case with O(3) \leftrightarrow SO(3).

Recall: $U \in SU(2)$ can be written as

$$U = \left(\begin{array}{cc} a & b \\ -b^* & a^* \end{array}\right)$$

Check $U^{\dagger}U = 1$, det $U = 1 \Rightarrow |a|^2 + |b|^2 = 1$. $\sim S^3$.

Example. Newtonian mechanics. It is *invariant* under O(3) and translations in (x, y, z, t) meaning that Newton's equations are *covariant*.

This is the *Galilei* group: this is a semi-direct product of the O(3) and translation group. The translation group is abelian. Writing (R, a) with $R \in O(3)$ and a being the translation $(\mathbf{r} \to \mathbf{r} + \mathbf{a})$ then

$$(R, \boldsymbol{a}) \times (S, \boldsymbol{b}) = (RS, R\boldsymbol{b} + \boldsymbol{a})$$

This implies that $Gal = O(3) \ltimes translation$. (Neglecting time.)

Exercise: Show that this rule satisfies the group axioms.

Exercise: Show that rule follows from

$$(R, \boldsymbol{a}) \Leftrightarrow \left(\begin{array}{c|c} R & \boldsymbol{a} \\ \hline & \mathbf{0} & 1 \end{array} \right)$$

Example: Special relativity:

Defined by the invariant tensor

$$\eta_{\mu\nu} = \left(\begin{array}{ccc} -1 & & 0 \\ & 1 & \\ & & 1 \\ 0 & & 1 \end{array} \right)$$

If $\Lambda \in SO(1,3)$ then $\Lambda_{\mu}{}^{\rho} \Lambda_{\nu}{}^{\sigma} \eta_{\rho\sigma} = \eta_{\mu\nu}$ or as matrices $\Lambda \eta \Lambda^T = \eta$.

Note: The covariant and contravariant indices are related by the inverse metric tensor:

$$x^{\mu} = \eta^{\mu\nu} x_{\nu}$$

One can obtain $\Lambda \eta \Lambda^T = \eta$ from comparing the transformation rules of x^{μ} and x_{μ} . (Excercise.)

Example: General relativity:

Here the only invariant tensor is the volume tensor $\varepsilon^{\mu\nu\rho\sigma}$ and the group is Diff(M) – diffeomorphisms of the manifold – the set of all coordinate transformations. Multiplication rule = composition of maps.

$$x^{\mu} \xrightarrow{f_1} \tilde{x}^{\mu} = \tilde{x}^{\mu}(x) \xrightarrow{f_2} \tilde{x}^{\mu} = \tilde{x}^{\mu}(\tilde{x}) = \tilde{x}^{\mu}(\tilde{x}(x))$$

of $f_2 \circ f_1 = f_3$. In general relativity we use $\partial_{\mu} = \frac{\partial}{\partial x^{\mu}}$ and dx^{μ} as protopypes for contravariant and covariant tensors.

Chain rule:

$$\partial_{\mu} = \frac{\partial}{\partial x^{\mu}} = \frac{\partial \tilde{x}^{\nu}}{\partial x^{\mu}} \frac{\partial}{\partial \tilde{x}^{\nu}}$$

also

$$\mathrm{d}\tilde{x}^{\,\mu} \!=\! \frac{\mathrm{d}\tilde{x}^{\,\mu}}{\partial x^{\nu}} \,\mathrm{d}x^{\nu}$$

Then the vector fields $V \equiv V^{\mu}\partial_{\mu}$ and diff 1-forms $\omega = dx^{\mu}\omega_{\mu}$ are invariant under $\text{Diff}(M) \Rightarrow$ transformation rules for V^{μ} and ω_{μ} .

Note: exterior differential $d = dx^{\mu} \partial_{\mu}$ is autmatically coordinate invariant.

Note: it is possible to introduce special invariant tensors \Rightarrow "structures".