2009-10-05 Lecturer: Bengt E W Nilsson

Quantum Mechanics (See the Tinkham book.)

In Quantum Mechanics we define the physics of a system by giving the Hamiltonian. For
example, the hydrogen atom (electron and proton at the origin):

p? o2 2
H==—+V(r), in thiscasewith V(r)=——=-—

2m r /$2+y2+z2.

This leads to the Schrédinger equation (time-independent):

Hipo () = Entp(r)
with r=(z,y, z) and H is the quantised Hamiltonian:

H:—%V +V(T)

E,, is the eigenvalue of ,. The symmetry is O(3) (more later today). To relate to finite groups
we consider instead a 3-proton situation (“molecular”).

Figure 1. Three protons, and an electron moving around in the potential created by them.

The electron in the field from these three protons moves in a complicated potential. But without
solving the problem explicitly we can say quite a lot about the problem using the finite group
D3 which is the symmetry group of the three proton “molecule”.

Introduce an operator Pr corresponding to some symmetry operation of the triangle. Being a
symmetry operation we must have

PrH = HPg,
i.e. PR commutes with H.

ﬁ(Pan) :En(ﬁan)

So Prt, is a new wave function with the same eigenvalue as .

Recalling the Wigner definition of Pr:

Pripu(r) =n(R™1(r))
(i.e. Prip(R(r))=1(r)). Compare 7= e, + ye,+ ze, or to quantum mechanics: 1(r) = (7).
1=R7'R.

This means that the eigenfunctions (v,(7)’s) group themselves into irreducible representations
of D3.

Py =3 i) (TO(R) )

mn

where (i) denotes one particular irreducible representation, and these I; (dimension of the irredu-
cible representation) wave functions all have eigenvalue E,,.



The normal situation then is that different irreducible representations have different eigenvalues.
If not there is an accidental degeneracy.

Ezxample: In the hydrogen atom the 2s and 2p states are degenerate. This degeneracy is lifted
for hydrogen-like atoms.

Ezample: The cyclic group, Ch, of order h has elements {E, A, A2, ..., A"~1} such that A" = E.
It is generated by one element A. These groups are abelian =- each element gives a conjugacy
class = there are h conjugacy classes and thus h different irreducible representations =- all the
irreducible representations are one-dimensional:

h
d()=h = alll=1
=1
. . ~\ P
=TO=e2mir/h p =01, h—1, (F@)) =1

This implies Bloch’s theorem in solid state:

Consider an electron in a one-dimensional periodic lattice with period L = a - h where a is the
lattice spacing and h is the number of lattice sites.

cyclic

= pawm(x) - T/J(T)(l"f' a) T= ,lp(r)(x) o2mir/h
P, is the translation operator, distance a. h steps goes back to origin.
= YM(z+a)=[L=ah]=e2""Lyp)(z) = [k =2mr/L] = eF(") ()
This equation has the general solution:
Yr(r) = up(z)
where wuy(x) is periodic with perid a. This is Bloch’s wave function.

Chapter 3 Continuous groups.
Recall the Schrodinger equation

ﬁwn('r) = Enwn('r)

This is rotationally invariant, i.e. has symmetry O(3):
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or T; — xf = Zj Rijz;, i =1,2,3. Using Einstein’s summation convention: z; = R;;z;. Scalar
xT

Tpr =x;2; =(z vy =2 )( y ) Rotational invariance of r2 means
4

product r?=|r|?=r

(7,/)2 —r2
= (")’ =rTRTRy =7Tr

Invariance implies RTR = 1 < R € O(3), the orthogonal group in three dimensions. (Exercise:
check group axioms.)



Note:

(sum over j implied)

(sum over j)

Now for i=% (no sum)

|Rij|<1

All matrix elements in R are bounded by 1; i.e., the group is compact. So R can be expressed in
terms of angles. How many angles? n dimensions, O(n). R has n? elements and RTR = 1 gives
n(n+1)/2 equations (since a symmetric equation).

R has n? —n(n+1)/2=n(n—1)/2 elements.
Example: n =3, number = 3. n =4, number = 6.

The invariance of 72 (and hence the group O(n)) can be described in terms of a tensor &;;. So
invariance of r? is equivalent to &; j being an invariant tensor.

Introduce covariant and contravariant indices: x% (covariant index) and z; (contravariant index).

" . . . i R4 . " -
Then we use as a definition (or input information) that z* = z’*=x/R;". The position of indices
is important. Then

2 Bl = (R™1) 7y

In other words z’z; is invariant without any restrictions on R. Any tensor T; j WM Pe will now
rotate according to these rules.

Tt =Tt = (R (RTY) 7 Ty Ryt

So this xix; is not a scalar product. It relates properties of dual vector spaces. Scalar products
then relates to z in the same space:

r?=2'0; 27
So in general (any R) will transform this é;; to

0= (R71),"(R™1) 7 6y

but for R € O(3) we get d;;=40;;, i.e. §;; is an O(3)-invariant tensor.
Normally this is written

R R Sirjr=0i;
or in matrix notation

R1RT=1 = RRT=1



Another example is from quantum mechanics. The wave function of a spin % part is

() e

and “scalar” in quantum mechanics is xTy. Call these components z; instead:

Z
sz:( 27 2z )( Z; ):|zl|2+|22|2

(5)-(2)=(%)

where U is a 2 X 2 complex matrix.

What is the invariant group?

UlU=1 < UeU(2)
and in z;€ C™ U € U(n).

Note: R e O(3) then RTR=1. Take the determinant, and we have (det R)*>=1=det R==+1 and
we define R € SO(3) if det R = + 1. (This property is conserved by matrix multiplication). R
with det R =—1 does not give a group.

So O(3) has two components (a component is the set of matrices R continuously related to each
other).

OBS. Both O(3) and SO(3) has three continuous parameters.

Note: U € U(2) then UTU =1=det U*det U = 1= det U =e'®. By defining SU(2) by det U =+ 1
we see that U(2) = U(1) x SU(2). U(1) is the phase {e!*}. Going from U(2) to SU(2) eliminates
one continuous parameter, unlike the case with O(3) < SO(3).

a b
o= o)

Check UTU =1,detU=1= |a|>+[b|> =1. ~S3.

Recall: U € SU(2) can be written as

Example. Newtonian mechanics. It is invariant under O(3) and translations in (x, y, z, t)
meaning that Newton’s equations are covartant.

This is the Galilei group: this is a semi-direct product of the O(3) and translation group. The
translation group is abelian. Writing (R, @) with R € O(3) and a being the translation (r — r +
a) then

(R,a)x (S,b)=(RS,Rb+a)
This implies that Gal=0(3)  translation. (Neglecting time.)

Exercise: Show that this rule satisfies the group axioms.

Exercise: Show that rule follows from

<R,a>@( ; )

0 |1



Example: Special relativity:

Defined by the invariant tensor

Npv = 1

If A €SO(1,3) then A,” Ay? npe =1, or as matrices A n AT =n.

Note: The covariant and contravariant indices are related by the inverse metric tensor:

One can obtain AnAT =7 from comparing the transformation rules of z# and z,. (Excercise.)
Example: General relativity:

Here the only invariant tensor is the volume tensor ¢#*?? and the group is Diff(M) — diffeo-
morphisms of the manifold — the set of all coordinate transformations. Multiplication rule =
composition of maps.

ah 4 g =gn(e) L i = i) =" (F(x))

of fao fi = f3. In general relativity we use 9,, = % and dz* as protoptypes for contravariant
and covariant tensors.
Chain rule:
9, — 0 o0 0
B 0xh Ozt Oz
also
A
dir =32 g
oxV

Then the vector fields V = V#9,, and diff 1-forms w = dz*w,, are invariant under Diff(M) =
transformation rules for V# and w,,.

Note: exterior differential d=dxz* 0, is autmatically coordinate invariant.

Note: it is possible to introduce special invariant tensors = “structures”.



