
2009–10–05 Lecturer: Bengt E W Nilsson

Quantum Mechanics (See the Tinkham book.)

In Quantum Mechanics we define the physics of a system by giving the Hamiltonian. For
example, the hydrogen atom (electron and proton at the origin):

H =
p2

2m
+V (r), in this case with V (r)=−

e2

r
=−

e2

x2 + y2 + z2
√ .

This leads to the Schrödinger equation (time-independent):

Ĥψn(r)=Enψ(r)

with r =(x, y, z) and Ĥ is the quantised Hamiltonian:

Ĥ =−
~

2

2m
∇2 +V (r)

En is the eigenvalue of ψn. The symmetry is O(3) (more later today). To relate to finite groups
we consider instead a 3-proton situation (“molecular”).

Figure 1. Three protons, and an electron moving around in the potential created by them.

The electron in the field from these three protons moves in a complicated potential. But without
solving the problem explicitly we can say quite a lot about the problem using the finite group
D3 which is the symmetry group of the three proton “molecule”.

Introduce an operator P̂R corresponding to some symmetry operation of the triangle. Being a
symmetry operation we must have

P̂R Ĥ = ĤP̂R,

i.e. P̂R commutes with Ĥ .

Ĥ
(

P̂Rψn

)

=En

(

P̂Rψn

)

So P̂Rψn is a new wave function with the same eigenvalue as ψn.

Recalling the Wigner definition of P̂R:

P̂Rψn(r)≡ ψn

(

R−1(r)
)

(i.e. P̂Rψ(R(r)) = ψ(r)). Compare r = xex + y ey + z ez or to quantum mechanics: ψ(r) = 〈r |ψ〉.

1 =R−1R.

This means that the eigenfunctions (ψn(r)’s) group themselves into irreducible representations
of D3.

P̂Rψn
(i) =

∑

m

ψm
(i)

(

Γ(i)(R)
)

mn

where (i) denotes one particular irreducible representation, and these li (dimension of the irredu-
cible representation) wave functions all have eigenvalue En.
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The normal situation then is that different irreducible representations have different eigenvalues.
If not there is an accidental degeneracy .

Example: In the hydrogen atom the 2s and 2p states are degenerate. This degeneracy is lifted
for hydrogen-like atoms.

Example: The cyclic group, Ch, of order h has elements {E, A, A2, 	 , Ah−1} such that Ah = E.
It is generated by one element A. These groups are abelian ⇒ each element gives a conjugacy
class ⇒ there are h conjugacy classes and thus h different irreducible representations ⇒ all the
irreducible representations are one-dimensional:

∑

i=1

h

(li)
2 =h ⇒ all li = 1

⇒Γ(i) = e2πir/h, r=0, 1,	 , h− 1,
(

Γ(i)
)h

= 1

This implies Bloch’s theorem in solid state:

Consider an electron in a one-dimensional periodic lattice with period L = a · h where a is the
lattice spacing and h is the number of lattice sites.

⇒ P̂aψ
(r)(x) = ψ(r)(x+ a) 5

lattice

cyclic
ψ(r)(x) e2πir/h

P̂a is the translation operator, distance a. h steps goes back to origin.

⇒ ψ(r)(x+ a) = [L= a h] = e2πira/Lψ(r)(x)= [k= 2πr/L] = eikaψ(r)(x)

This equation has the general solution:

ψk(x)= uk(x) eikx

where uk(x) is periodic with perid a. This is Bloch’s wave function.

Chapter 3 Continuous groups.

Recall the Schrödinger equation

Ĥψn(r) =Enψn(r)

This is rotationally invariant, i.e. has symmetry O(3):

r =





x

y

z



, r→ r ′=R r,





x

y

z



→





x′

y ′

z ′



=





Rxx Rxy 

Ryx 

Rzx 
 







x

y

z





or xi → xi
′ =

∑

j
Rij xj, i = 1, 2, 3. Using Einstein’s summation convention: xi

′ = Rij xj. Scalar

product r2 = |r |2 = rTr = xixi =
(

x y z
)





x

y

z



. Rotational invariance of r2 means

(r ′)2 = r2

⇒ (r ′)
2 = rTRTR r = rT r

Invariance implies RTR = 1 ⇔ R ∈ O(3), the orthogonal group in three dimensions. (Exercise:
check group axioms.)
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Note:

(

RT
)

ij
(R)

jk
= δik

(sum over j implied)

(R)
ji
Rjk = δik

(sum over j)

Now for i= k (no sum)

∑

j

(Rij)
2 = 1

|Rij |6 1

All matrix elements in R are bounded by 1; i.e., the group is compact. So R can be expressed in

terms of angles. How many angles? n dimensions, O(n). R has n2 elements and RTR = 1 gives
n (n+ 1)/2 equations (since a symmetric equation).

R has n2−n(n+1)/2 =n(n− 1)/2 elements.

Example: n= 3, number = 3. n= 4, number = 6.

The invariance of r2 (and hence the group O(n)) can be described in terms of a tensor δij. So
invariance of r2 is equivalent to δij being an invariant tensor .

Introduce covariant and contravariant indices: xi (covariant index) and xi (contravariant index).

Then we use as a definition (or input information) that xi*R x′ i = xjRj
i . The position of indices

is important. Then

xi*R xi
′ =

(

R−1
)

i
jxj

In other words xixi is invariant without any restrictions on R. Any tensor Tijk
lmnpq will now

rotate according to these rules.

Tij
k→Tij

′ k =
(

R−1
)

i
i′

(

R−1
)

j
j ′

Ti′j ′
k ′

Rk ′
k

So this xixi is not a scalar product. It relates properties of dual vector spaces. Scalar products
then relates to x in the same space:

r2 = xiδij x
j

So in general (any R) will transform this δij to

δij
′ =

(

R−1
)

i
i′

(

R−1
)

j
j ′

δi′j ′

but for R∈O(3) we get δij
′ = δij , i.e. δij is an O(3)-invariant tensor.

Normally this is written

Ri
i′Rj

j ′

δi′j ′ = δij

or in matrix notation

R 1RT =1 ⇒ RRT = 1
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Another example is from quantum mechanics. The wave function of a spin
1

2
part is

χ=

(

χ1(r)
χ2(r)

)

, χi∈C

and “scalar” in quantum mechanics is χ†χ. Call these components zi instead:

z†z =
(

z1
∗ z2

∗
)

(

z1
z2

)

= |z1|2 + |z2|2

What is the invariant group?
(

z1
z2

)

→

(

z1
′

z2
′

)

=U

(

z1
z2

)

where U is a 2× 2 complex matrix.

U †U = 1 ⇔ U ∈U(2)

and in zi∈Cn: U ∈U(n).

Note: R∈O(3) then RTR= 1. Take the determinant, and we have (detR)
2 = 1⇒ detR=± 1 and

we define R ∈ SO(3) if det R = + 1. (This property is conserved by matrix multiplication). R̃
with det R̃=− 1 does not give a group.

So O(3) has two components (a component is the set of matrices R continuously related to each
other).

OBS. Both O(3) and SO(3) has three continuous parameters.

Note: U ∈U(2) then U †U = 1⇒ detU∗ detU = 1⇒ detU = eiα. By defining SU(2) by detU = + 1
we see that U(2) = U(1) × SU(2). U(1) is the phase {eiα}. Going from U(2) to SU(2) eliminates
one continuous parameter, unlike the case with O(3) ↔ SO(3).

Recall: U ∈SU(2) can be written as

U =

(

a b

− b∗ a∗

)

Check U †U =1, detU = 1⇒|a|2 + |b|2 = 1. ∼S3.

Example. Newtonian mechanics. It is invariant under O(3) and translations in (x, y, z, t)
meaning that Newton’s equations are covariant .

This is the Galilei group: this is a semi-direct product of the O(3) and translation group. The
translation group is abelian. Writing (R, a) with R ∈O(3) and a being the translation (r→ r +
a) then

(R,a)× (S, b)= (RS,R b+ a)

This implies that Gal=O(3) ⋉ translation. (Neglecting time.)

Exercise: Show that this rule satisfies the group axioms.

Exercise: Show that rule follows from

(R,a)⇔









R a

0 1








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Example: Special relativity:

Defined by the invariant tensor

ηµν =









− 1 0
1

1
0 1









If Λ∈ SO(1, 3) then Λµ
ρ Λν

σ ηρσ = ηµν or as matrices Λ ηΛT = η.

Note: The covariant and contravariant indices are related by the inverse metric tensor:

xµ = ηµνxν

One can obtain ΛηΛT = η from comparing the transformation rules of xµ and xµ. (Excercise.)

Example: General relativity:

Here the only invariant tensor is the volume tensor εµνρσ and the group is Diff(M) – diffeo-
morphisms of the manifold – the set of all coordinate transformations. Multiplication rule =
composition of maps.

xµ.f1

x̃µ = x̃µ(x).f2

x̃̃
µ
= x̃̃

µ
(x̃)= x̃̃

µ
(x̃(x))

of f2 ◦ f1 = f3. In general relativity we use ∂µ =
∂

∂xµ
and dxµ as protoptypes for contravariant

and covariant tensors.

Chain rule:

∂µ =
∂

∂xµ =
∂x̃ν

∂xµ

∂

∂x̃ν

also

dx̃µ =
dx̃µ

∂xν
dxν

Then the vector fields V ≡ V µ∂µ and diff 1-forms ω = dxµωµ are invariant under Diff(M) ⇒
transformation rules for V µ and ωµ.

Note: exterior differential d = dxµ ∂µ is autmatically coordinate invariant.

Note: it is possible to introduce special invariant tensors ⇒ “structures”.
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