2009 - 09 - 28

Lecturer: Bengt E W Nilsson

Recall: The Great Orthogonality Theorem.

$$\sum_{R \in G} \left(\Gamma^{(i)}(R) \right)_{\mu\nu}^* \left(\Gamma^{(j)}(R) \right)_{\alpha\beta} = \frac{g}{l_i} \,\delta_{ij} \,\delta_{\mu\alpha} \,\delta_{\nu\beta}$$

with g = |G| being the order of the group G and l_i being the dimension of the representation (i). Only irreducible representations appear as $\Gamma^{(i)}$. Summing over matrix elements we can get relations for characters. $(\chi(R) \equiv \text{Tr}(\Gamma^{(i)}(R)))$. \Rightarrow Orthogonality relations for rows and columns of the character table.

Summary of rules leading to character tables

- (i) The number of irreducible representations = the number of classes.
- (ii) $\sum_{i} (l_i)^2 = g$ where we sum over all irreducible representations of G.
- (iii) The orthogonality of the character table columns
- (iv) The orthogonality of the character table rows
- (v) $N_j \chi^{(i)}(\mathcal{C}_j) N_k \chi^{(i)}(\mathcal{C}_k) = l_i \sum_l c_{jkl} N_l \chi^{(i)}(\mathcal{C}_l)$ with c_{jkl} being class multiplication constants.

Exercise: Use (i) – (iv) to derive the D_3 character table directly and check property (v).

Another use is to decompose *reducible* representations into irreducible representations. For any representation $\Gamma(R)$ with character $\chi(R)$ we have

$$\chi(R) = \sum_{i} a_{i} \chi^{(i)}(R) \quad \forall R \in G$$

(sum over irreducible representations)

$$\Rightarrow \quad a_i = \frac{1}{g} \sum_k N_k \Big(\chi^{(i)}(\mathcal{C}_k) \Big)^* \chi(\mathcal{C}_k)$$

Exercise: Show this.

Exercise: Find all irreducible representations of all finite groups of prime order. \Rightarrow abelian \Rightarrow all elements are a separate class \Rightarrow the number of irreducible representation $= |G| \Rightarrow$ from

$$\sum_{i=1}^{|G|} (l_i)^2 \!=\! |G|$$

we see that all irreducible representations are one-dimensional, i.e. complex numbers solving $(R)^{|G|} = E$.

$$\Gamma^{(r)} = e^{2\pi i r/|G|}, \quad r = 0, ..., |G| - 1$$

Now consider the following funny representation called the *regular representation*: Write the multiplication table for D_3 as

	E	A	B	C	D	F
E			B	C	D	F
A^{-1}	A	E				
B^{-1}			E			A
C^{-1}				E	A	
D^{-1}				A	E	
F^{-1}			A			E

This gives you a six-dimensional representation:

$$\Gamma^{\text{reg}}(E) = \begin{pmatrix} 1 & & & \\ & 1 & & \\ & & 1 & & \\ & & 1 & & \\ & & & 1 & \\ & & 1 & & 1 & \\ & & 1 & &$$

 \Rightarrow Theorem (the Celebrated Theorem) $a_j = l_j$

$$\chi^{\rm (reg)} = \sum_i \, l_j \, \chi^{(j)}$$

Proof.

$$a_{j} = \frac{1}{g} \sum_{R} \left(\chi^{(j)}(R) \right)^{*} \underbrace{\chi^{(\operatorname{reg})}(R)}_{\rightarrow \chi^{(\operatorname{reg})}(E) = g} = \frac{1}{g} \left(\chi^{(j)}(E) \right)^{*} g = \left(\chi^{(j)}(E) \right)^{*} = l_{j}$$
$$\Rightarrow \sum_{i} \left(l_{i} \right)^{2} = g$$

(from before we only had $\,\leqslant\,,$ now we have $\,=\,.)$ Equality follows since

$$\Gamma^{\rm reg} = \begin{pmatrix} \Gamma^{(1)} & & & \\ & \Gamma^{(1)} & & \\ & & \ddots & \\ & & & \Gamma^{(1)} \\ & & & & \Gamma^{(2)} \\ & & & & & & \ddots \\ & & & & & & \ddots \end{pmatrix} l_2 \, \text{times}$$

Size lhs = g, size rhs = $\sum_i (l_i)^2$.

We will now briefly discuss two kinds of important applications:

- 1) Basic Galois theory.
- 2) Quantum Mechanics.

1) Galois theory.

Consider an *n*-th order polynomial equation in $z \in \mathbb{C}$ with roots $z_i, i = 1, ..., n$.

$$(z - z_1)(z - z_2)\cdots(z - z_n) = 0$$
$$z^n - I_1 z^{n-1} + I_2 z^{n-2} + \cdots + (-1)^n I_n = 0$$

which we aim to solve in general. Here

$$I_1 = \sum_{i=1}^n z_i, \quad I_2 = \sum_{i < j} z_i z_j, \quad \dots \quad I_n = z_1 z_2 \cdots z_n$$

These I_i 's are all invariant under permutation of z_i 's, i.e. under the Galois group S_n .

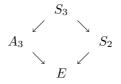
Note now that any function invariant under S_n is expressible as

$$f^{\mathrm{inv}} = f(I_1, I_2, \dots, I_n)$$

Problem: Find the z_i 's expressed in terms of the I_i 's. (This is equivalent to solving the *n*-th order equation, not knowing the z_i 's.)

Galois theorem: A solution $z_i \in \mathbb{C}$ exists if and only if there is a chain of subgroup in the subgroup diagram of S_n such that each arrow in the chain connects a G and an H satisfying (i) H is an invariant subgroup of G and (ii) G/H is abelian.

Example of subgroup diagram:



The theorem also says this is constructive.

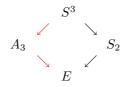
 $\bullet S_3.$

$$S_3/A_3 = S_2$$
 abelian $A_3/I = A_3$ abelian

 $\Rightarrow\,$ all cubic equations can be solved. Home problem: Quartic equation.

Note: From 5'th order and up the genereal equation cannot be solved.

Exercise: Solve the cubic equation. Is this possible in general? Yes according to Galois' theorem.



Red arrows: satisfy Gallois condition.

Exercise: Does the other chain (via S_2) also work? I.e. is S_3/S_2 a group?

 $S_3/A_3 = S_2$ is abelian, and $A_3/E = A_3$ is also abelian.

Solution: $z^3 - I_1 z^2 + I_2 z - I_3 = 0$. Roots r_1, r_2, r_3 .

$$\left\{ \begin{array}{l} I_1 = r_1 + r_2 + r_3 \\ I_2 = r_1 r_2 + r_2 r_3 + r_1 r_3 \\ I_3 = r_1 r_2 r_3 \end{array} \right.$$

These are all invariant under S_3 (= D_3). First we need $A_3/E = A_3$ and its character table.

$$A_{3} = \left\{ E, \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}}_{\equiv (123)}, \underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}}_{\equiv (132)} \right\}$$

Character table

where $\omega^3 = 1$, i.e. $\omega = e^{2\pi i/3}$. We need to represent these one-dimensional representations on the roots r_1 , r_2 and r_3 .

$$\begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & \omega^2 \\ 1 & \omega^2 & \omega \end{pmatrix} \begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \begin{pmatrix} r_1 + r_2 + r_3 = I_1 \\ r_1 + \omega r_2 + \omega^2 r_3 \\ r_1 + \omega^2 r_2 + \omega r_3 \end{pmatrix}$$

These are three functions of the roots.

That is:

$$\Gamma^{(1)}: \quad v_1 = r_1 + r_2 + r_3 = I_1$$

so v_1 is invariant under A_3 (in fact under the whole of S_3).

 $\Gamma^{(2)}: v_2$ is invariant under I and goes to ωv_2 under (123) and to $\omega^2 v_2$ under (132).

 $\Gamma^{(3)}: v_3$ similar.

Check:

$$(123)v_2 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix} v_2 = r_2 + \omega r_3 + \omega^2 r_1 = \omega^2 v_2?$$

not correct. We should have used $(123)^{-1}$ instead.

$$(123)^{-1}v_2 = (132)v_2 = \omega v_2$$

Why is this?

Answer: Follow Wigner: Define an operator $\mathcal{O}_A \in G$ acting on functions of r_i as follows

$$\mathcal{O}_A f(A(r_i)) = f(r_i) \implies \mathcal{O}_A f(r_i) = \underbrace{f(A^{-1}(r_i))}_{\text{what we did}}$$

So we have now three functions of r_i : $v_1 = I_1$ (S_3 invariant) while v_2 and v_3 are not invariant under A_3 .

So, next step. We need functions invariant under A_3 but not under $S_2 = S_3/A_3$. (1st step A_3/I). These are $(v_2)^3$ and $(v_3)^3$: these are invariant under A_3 (trivially, $\omega^3 = 1$) but not invariant under S_2 .

Check

$$(12)(v_2)^3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix} (v_2)^3 = \begin{pmatrix} r_1 + \omega r_2 + \omega^2 r_3 \\ 2 & 1 \end{pmatrix}^3 = \omega^3 (v_3)^2 = (v_3)^3$$

It takes $(v_2)^3 \rightarrow (v_3)^3$.

Since S_2 is the Galois group of a second order equation we have

$$\begin{pmatrix} x - (v_2)^3 \end{pmatrix} \begin{pmatrix} x - (v_3)^3 \end{pmatrix} = 0$$

$$\Rightarrow \begin{cases} J_1 = (v_2)^3 + (v_3)^3 \\ J_2 = (v_2)^3 \cdot (v_3)^3 \end{cases}$$

which are the two combinations that are invariant under S_2 . $\Rightarrow J_1$ and J_2 are S_3 invariant.

$$\Rightarrow J_1 = \sum_{i+2j+3k=3} A_{ijk} I_1^i I_2^j I_3^k$$
$$\Rightarrow J_2 = \sum_{i+2j+3k=6} B_{ijk} I_1^i I_2^j I_3^k$$

Then we see that:

$$\begin{cases} \begin{pmatrix} \left(v_2\right)^3\\ \left(v_3\right)^3 \end{cases} = \frac{1}{2} J_1 \pm \sqrt{J_1^2 - J_2}$$
$$\Rightarrow \quad \left\{ \begin{array}{c} v_2\\ v_3 \end{array} \right\} = \left(\frac{1}{2} J_1 \pm \sqrt{J_1^2 - J_2}\right)^{1/3}$$

Finally the solution is obtained by inverting the character table

$$\begin{pmatrix} r_1 \\ r_2 \\ r_3 \end{pmatrix} = \frac{1}{3} \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{pmatrix}}_{= (\text{character table})^{-1}} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$$

Trick: Procedure much simpler after a Tschirnhaus transformation. $z = y + \frac{1}{3}I_1$. \Rightarrow The new $I_1 = 0$. *Exercise:* show this.

2. Quantum Mechanics (Tinkham)

In Quantum Mechanics we define the physics of a system by its Hamiltonian (or energy): Example: The hydrogen atom: H for the e^- is:

$$H = \frac{p^2}{2m} + V(r)$$

with r = distance to the proton.

$$V(r) = -\frac{e^2}{r}$$

 \Rightarrow Schrödinger equation: $\hat{H}\psi_n = E_n\psi_n$

$$\hat{H}=-\frac{\hbar^2}{2m}\,\nabla^2+V(r)$$

Here E_n are the possible energy eigenvalues. The symmetry group of this equation is SO(3), rotations in three dimensions.

To get back to D_3 we can instead of proton consider three protons at the corners of a triangle. V is complicated now. But the Schrödinger equation is still invariant under D_3 .

So let \hat{P}_R be an operator corresponding to an element in D_3 , then

$$\hat{P}_R\hat{H} = \hat{H}\hat{P}_R$$

or

$$\hat{H}\left(\hat{P}_{R}\psi_{n}\right) = E_{n}\left(\hat{P}_{R}\psi_{n}\right)$$

 $\Rightarrow \hat{P}_R \psi_n$ has the same eigenvalue as ψ_n itself.

Final comment

1) If $G/H_1 = H_2$ and $G/H_2 = H_1$, then $G = H_1 \times H_2$ (direct product). This means that all irreducible representations of G are tensor products of H_1 and H_2 .

$$\begin{split} (\Gamma(A))_{AB} &= (\Gamma(B))_{ab} (\Gamma(C))_{\alpha\beta} \\ (\Gamma(G))_{AB} &= (\Gamma(H_1))_{ab} (\Gamma(H_2))_{\alpha\beta} \end{split}$$

2) If $G/H_1 = H_2$ and $G/H_2 \neq H_1$. H_1 is one invariant subgroup. H_2 is not an invariant subgroup. $G = H_2 \ltimes H_1$. Semi-direct product.

Exercise: Poincaré group. Which part is invariant subgroup?