
2009–09–28 Lecturer: Bengt E W Nilsson

Recall: The Great Orthogonality Theorem.

∑

R∈G

(

Γ(i)(R)
)

µν

∗ (

Γ(j)(R)
)

αβ
=
g

li
δij δµα δνβ

with g= |G| being the order of the group G and li being the dimension of the representation (i).

Only irreducible representations appear as Γ(i). Summing over matrix elements we can get rela-

tions for characters. (χ(R) ≡ Tr
(

Γ(i)(R)
)

). ⇒ Orthogonality relations for rows and columns of

the character table.

Summary of rules leading to character tables

(i) The number of irreducible representations = the number of classes.

(ii)
∑

i
(li)

2 = g where we sum over all irreducible representations of G.

(iii) The orthogonality of the character table columns

(iv) The orthogonality of the character table rows

(v) Njχ
(i)(Cj)Nkχ

(i)(Ck) = li
∑

l
cjklNlχ

(i)(Cl) with cjkl being class multiplication constants.

Exercise: Use (i) – (iv) to derive the D3 character table directly and check property (v).

Another use is to decompose reducible representations into irreducible representations. For any
representation Γ(R) with character χ(R) we have

χ(R)=
∑

i

aiχ
(i)(R) ∀R∈G

(sum over irreducible representations)

⇒ ai =
1

g

∑

k

Nk

(

χ(i)(Ck)
)∗
χ(Ck)

Exercise: Show this.

Exercise: Find all irreducible representations of all finite groups of prime order. ⇒ abelian ⇒ all
elements are a separate class ⇒ the number of irreducible representation = |G| ⇒ from

∑

i=1

|G|

(li)
2 = |G|

we see that all irreducible representations are one-dimensional, i.e. complex numbers solving

(R)
|G|

=E.

Γ(r) = e2πir/|G|, r=0,	 , |G| − 1

Now consider the following funny representation called the regular representation : Write the
multiplication table for D3 as

E A B C D F

E E A B C D F

A−1 A E

B−1 E A

C−1 E A

D−1 A E

F−1 A E
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This gives you a six-dimensional representation:

Γreg(E)=

















1
1

1
1

1
1

















Γreg(A)=

















1
1

1
1

1
1

















⇒







χ(E)= 6= χ(C1)
χ(C2) =0
χ(C3) =0

⇒ Theorem (the Celebrated Theorem) aj = lj

χ(reg) =
∑

i

ljχ
(j)

Proof.

aj =
1

g

∑

R

(

χ(j)(R)
)∗

χ(reg)(R)�
→χ(r e g )(E)=g

=
1

g

(

χ(j)(E)
)∗
g=

(

χ(j)(E)
)∗

= lj

⇒
∑

i

(li)
2 = g

(from before we only had 6 , now we have = .)

Equality follows since

Γreg =





























Γ(1)

Γ(1)  l1 times

Γ(1)

Γ(2)

Γ(2) l2 times 




























Size lhs = g, size rhs =
∑

i
(li)

2. �

We will now briefly discuss two kinds of important applications:

1) Basic Galois theory.

2) Quantum Mechanics.
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1) Galois theory.

Consider an n-th order polynominal equation in z ∈C with roots zi, i= 1,	 , n.
(z − z1)(z − z2)
 (z − zn)= 0

zn− I1z
n−1 + I2z

n−2 +
 + (− 1)nIn = 0

which we aim to solve in general. Here

I1 =
∑

i=1

n

zi, I2 =
∑

i<j

zizj , 	 In = z1 z2
 zn

These Ii’s are all invariant under permutation of zi’s, i.e. under the Galois group Sn.

Note now that any function invariant under Sn is expressible as

f inv = f(I1, I2,	 , In)

Problem: Find the zi’s expressed in terms of the Ii’s. (This is equivalent to solving the n-th
order equation, not knowing the zi’s.)

Galois theorem: A solution zi ∈C exists if and only if there is a chain of subgroup in the sub-
group diagram of Sn such that each arrow in the chain connects a G and an H satisfying (i) H
is an invariant subgroup of G and (ii) G/H is abelian.

Example of subgroup diagram:

S3

ւ ց
A3 S2

ց ւ
E

The theorem also says this is constructive.

•S3.

S3/A3 =S2 abelian
A3/I =A3 abelian

⇒ all cubic equations can be solved. Home problem: Quartic equation.

Note: From 5’th order and up the genereal equation cannot be solved.

Exercise: Solve the cubic equation. Is this possible in general? Yes according to Galois’ theorem.

S3

ւ ց
A3 S2

ց ւ
E

Red arrows: satisfy Gallois condition.

Exercise: Does the other chain (via S2) also work? I.e. is S3/S2 a group?

S3/A3 =S2 is abelian, and A3/E=A3 is also abelian.
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Solution: z3− I1z
2 + I2z − I3 = 0. Roots r1, r2, r3.







I1 = r1 + r2 + r3
I2 = r1 r2 + r2 r3 + r1 r3
I3 = r1r2r3

These are all invariant under S3 (=D3). First we need A3/E =A3 and its character table.

A3 =











E,

(

1 2 3
2 3 1

)�
≡(123)

,

(

1 2 3
3 1 2

)�
≡(132)











Character table

I {(123)} {(132)}
Γ(1) 1 1 1

Γ(2) 1 ω ω2

Γ(3) 1 ω2 ω

where ω3 = 1, i.e. ω = e2πi/3. We need to represent these one-dimensional representations on the
roots r1, r2 and r3.





v1
v2
v3



=







1 1 1

1 ω ω2

1 ω2 ω











r1
r2
r3



=







r1 + r2 + r3 = I1
r1 +ωr2 +ω2r3
r1 +ω2r2 +ω r3







These are three functions of the roots.

That is:

Γ(1): v1 = r1 + r2 + r3 = I1

so v1 is invariant under A3 (in fact under the whole of S3).

Γ(2): v2 is invariant under I and goes to ωv2 under (12 3) and to ω2v2 under (132).

Γ(3): v3 similar.

Check:

(123)v2 =

(

1 2 3
2 3 1

)

v2 = r2 +ωr3 +ω2r1 =ω2v2?

not correct. We should have used (123)−1 instead.

(123)
−1
v2 = (132) v2 =ω v2

Why is this?

Answer: Follow Wigner: Define an operator OA∈G acting on functions of ri as follows

OAf(A(ri)) = f(ri) ⇒ OA f(ri) = f(A−1(ri))�
what we did

above

So we have now three functions of ri: v1 = I1 (S3 invariant) while v2 and v3 are not invariant
under A3.

4



So, next step. We need functions invariant under A3 but not under S2 = S3/A3. (1st step A3/I).

These are (v2)
3 and (v3)

3: these are invariant under A3 (trivially, ω3 = 1) but not invariant under
S2.

Check

(12)(v2)
3 =

(

1 2 3
2 1 3

)

(v2)
3 =

(

r1
2

+ωr2
1

+ω2r3

)3

=ω3(v3)
2 = (v3)

3

It takes (v2)
3→ (v3)

3.

Since S2 is the Galois group of a second order equation we have

(

x− (v2)
3
)(

x− (v3)
3
)

= 0

⇒
{

J1 = (v2)
3 + (v3)

3

J2 = (v2)
3 · (v3)3

which are the two combinations that are invariant under S2. ⇒ J1 and J2 are S3 invariant.

⇒ J1 =
∑

i+2j+3k=3

AijkI1
iI2

j
I3

k

⇒ J2 =
∑

i+2j+3k=6

BijkI1
iI2

j
I3

k

Then we see that:
{

(v2)
3

(v3)
3

}

=
1

2
J1± J1

2−J2

√

⇒
{

v2
v3

}

=

(

1

2
J1±

√ )1/3

Finally the solution is obtained by inverting the character table





r1
r2
r3



=
1

3







1 1 1

1 ω2 ω

1 ω ω2





�
=

(

character table)−1





v1
v2
v3





Trick: Procedure much simpler after a Tschirnhaus transformation. z = y +
1

3
I1. ⇒ The new

I1 = 0. Exercise: show this.

2. Quantum Mechanics (Tinkham)

In Quantum Mechanics we define the physics of a system by its Hamiltonian (or energy):

Example: The hydrogen atom: H for the e− is:

H =
p2

2m
+V (r)

with r=distance to the proton.

V (r) =− e2

r
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⇒ Schrödinger equation: Ĥψn =Enψn

Ĥ =− ~
2

2m
∇2 +V (r)

Here En are the possible energy eigenvalues. The symmetry group of this equation is SO(3),
rotations in three dimensions.

To get back to D3 we can instead of proton consider three protons at the corners of a triangle.
V is complicated now. But the Schrödinger equation is still invariant under D3.

So let P̂R be an operator corresponding to an element in D3, then

P̂RĤ = ĤP̂R

or

Ĥ
(

P̂Rψn

)

=En

(

P̂Rψn

)

⇒ P̂Rψn has the same eigenvalue as ψn itself.

Final comment

1) If G/H1 =H2 and G/H2 =H1, then G =H1 ×H2 (direct product). This means that all irre-
ducible representations of G are tensor products of H1 and H2.

(Γ(A))
AB

=(Γ(B))
ab

(Γ(C))
αβ

(Γ(G))
AB

= (Γ(H1))ab
(Γ(H2))αβ

2) If G/H1 = H2 and G/H2 � H1. H1 is one invariant subgroup. H2 is not an invariant sub-
group. G=H2 ⋉H1. Semi-direct product.

Exercise: Poincaré group. Which part is invariant subgroup?
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