
2009–09–21 Lecturer: Bengt E W Nilsson

Chapter 2: Representations & characters

Definition: Matrices satisfying the multiplication table of a group G are called a representa-

tion, often denoted Γ(R) for R∈G.

Example: The group {1,− 1} is a representation of D3:

E, D, F → 1
A, B, C → − 1

This is an unfaithful representation (i.e., not one-to-one).

Definition: Satisfying the multiplication table means

G∋Ai → Γ(Ai) then AiAj = Ak ⇒ Γ(Ai)Γ(Aj)= Γ(Ak)

Definition: The dimension of the representation = the size of the matrices!

Note: A similarity transformation just changes the basis used and thus

{

Γi
′= s−1Γis

ΓiΓj = Γk

⇒ Γi
′Γj

′ = s−1 Γis s−1 Γjs = s−1ΓiΓj s = s−1Γks = Γk
′

Matrices related by similarity transformations are called equivalent representations .

Note: If Γ(1) and Γ(2) are two (in)equivalent representations, then

Γ =

(

Γ(1) 0

0 Γ(2)

)

is also a representation (non-equivalent to Γ(1) and Γ(2)). But one might get this representation
in a form (after an arbitrary similarity transformation) where this block structure is not
obvious.

Definition: If a representation can be put in block form by a suitable choice of basis then the
representation is reducible, otherwise irreducible.

Question: How can we tell if a representation is irreducible or not?

To find the similarity transformation might be difficult in general (if it exists).

However, the problem will be rather easy if we can find all irreducible representations .

First: Can we express information about a representation that is independent of basis (i.e., is
the same for all equivalent representations)?

The answer is the character .

Recall examples of representations of D3:

1. ∀Ai→ 1

2. E, D, F → 1. A, B, C →− 1.
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3. 2-dimensional matrix representation given in a previous lecture (faithful).

In fact there is another very natural representation of D3 = S3 (permutation group) in terms of
3× 3 matrices.

E =





1 0 0
0 1 0
0 0 1



, A=





0 1 0
1 0 0
0 0 1



=





1→ 2
2→ 1
3→ 3





B =





0 0 1
0 1 0
1 0 0



, C =





1 0 0
0 0 1
0 1 0





Note: The alternative group A3⊂D3 is defined as the set of 3× 3 matrices of determinant= + 1.

Definition: Character of representation Γ(i):

χ(i) = {χi(E), χ(i)(Ax),	 , χ(i)(Ag)}

(g = |G|) where each

χ(i)(Aj) =TrΓ(i)(Aj)=
∑

µ=1

li
(

Γ(i)(Aj)
)

µµ

where li is the dimension of the representation.

Note: Tr(s−1Γs)=Tr(Γ).

Consider now the character table from the previous representation (1), (2), (3).

C1 3C2 2C3

Γ(1) 1 1 1

Γ(2) 1 − 1 1

Γ(3) 2 0 − 1

C1 = {E}
C2 = {A, B, C}
C3 = {D, F }

Note: Two funny properties of this table:

1. The columns are perpendicular to each other.

2. The rows are perpendicular if using the number of elements as a metric.

This is a general feature that can be proved using the orthogonality theorem.

To prove this theorem we first need two lemmas:

Lemma 1: Any matrix representation with determinant � 0 is equivalent to a unitary represent-
ation.

Proof. Consider any representation Ai ∈ G (writing Ai instead of Γ(Ai) just to speed up
writing) then

H =
∑

i=1

g

AiAi
†= H †

(i.e. H is hermitian). Any hermitian matrix can be diagonalised by a unitary matrix.

∃U such that d = U−1H U
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where d is diagonal and all dii are real and positive. (This is an exercise.) Write d in terms of
Ai

′= U−1AiU .

⇒ 1= d−1/2
∑

i

Ai
′ Ai

′† d−1/2

Ai
′= U−1AiU

and hence

Aj
′′= d−1/2 Aj

′ d1/2

is unitary.

Check:

Aj
′′
(

Aj
′′
)†

= d−1/2 Aj
′d1/2 d1/2

(

Aj
′
)†

d−1/2 =

= d−1/2 Aj
′d1/2

(

d−1/2
∑

i

Ai
′Ai

′† d−1/2

)

d1/2
(

Aj
′
)†

d−1/2 =

= d−1/2Aj
′
∑

i

Ai
′
(

Ai
′
)†(

Aj
′
)†

d−1/2 = d−1/2
∑

i

(

Aj
′Ai

′
)(

Aj
′Ai

′
)†

d−1/2 =

(Rearrangement theorem)

= d−1/2
∑

k

Ak
′
(

Ak
′
)†

d−1/2 =1. �

Lemma 2: Schur’s lemma.

A matrix which commutes with all matrices in an irreducible representation is constant (propor-
tional to the identity matrix).

Proof. From previous lemma about the unitarity, we may always consider a unitary representa-
tion. Then let M be a matrix such that MAi = Ai M ∀Ai∈G. Take dagger on this:

Ai
†
M †= M †Ai

†

Ai
† = Ai

−1. Take Ai(	 )Ai⇒

M †Ai = AiM
†

But then the two hermitian matrices:

H1 = M +M †, H2 = i
(

M −M †
)

also commute with ∀Ai. Next we show that such matrices are constant.

Since H is hermitian there is a unitary matrix U such that

d = U−1H U

⇒ Ai
′ d = d Ai

′

where Ai
′= U−1Ai U . (Check).
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In components this reads

(

Ai
′
)

µν
dνν = dµµ

(

Ai
′
)

µν

⇒
(

Ai
′
)

µν
(dνν − dµµ)= 0 ∀Ai

So if dνν � dµµ then
(

Ai
′
)

µν
= 0∀i, i.e. A′ is in block form (i.e. reducible), and if the representa-

tion is irreducible then dνν = dµµ⇒ d∝1. �

Example: Suppose

d =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 2 0 0
0 0 0 0 2 0
0 0 0 0 0 2

















i.e. d11 = d22 = d33 � d44 = d55 = d66

⇒∀Ai Ai
′=

















× × × 0 0 0
× × × 0 0 0
× × × 0 0 0
0 0 0 × × ×
0 0 0 × × ×
0 0 0 × × ×

















Lemma 3:

If M exists such that for two irreducible representations Γ(i) and Γ(j) of dimension li and lj and

MΓ(i)(Ak)= Γ(j)(Ak)M ∀Ak ∈G

then (1) if li� lj then M = 0, i.e. Γ(i) and Γ(j) are different irreducible representations.

(2) If li = lj then M = 0 and Γ(i) and Γ(j) are inequivalent representations or det(M) � 0 (Γ(i)

and Γ(2) are equivalent).

Proof. Similar to the proofs above. �

Theorem: The Great Orthogonality theorem.

Consider all inequivalent irreducible unitary representations of G denoted Γ(i)(R), then:

∑

R∈G

(

Γ(i)(R)
)

µν

∗ (

Γ(j)(R)
)

αβ
=

g

li
δij δµα δνβ

Proof.

First step: Consider two inequivalent representations Γ(1) and Γ(2). Then

M ≡
∑

R

Γ(2)(R)X Γ(1)
(

R−1
)

where X is an arbitrary matrix. It satisfies

M Γ(1) = Γ(2)M
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Check:

Γ(2)(S)M =
∑

R

Γ(2)(S) Γ(2)(R)�
=Γ(2)(SR)

X Γ(1)(R−1)Γ(1)(S−1)Γ(1)(S)=

=
∑

R

Γ(2)(S R) X Γ(1)
(

(S R)
−1
)

Γ(1)(S)=

(Rearrangement theorem)

=
∑

R

Γ(2)(R)X Γ(1)(R−1 ) Γ(1)(S)= M Γ(1)(S).

This is true for any matrix X , in the definition of M .

But since we assume that Γ(1) and Γ(2) are inequivalent M = 0 (by the previous lemma).

Mαµ = 0 =
∑

R

∑

β̄ ,ν̄

(

Γ(2)(R)
)

αβ̄
Xβ̄ν̄

(

Γ(1)
(

R−1
)

)

ν̄µ
.

Now pick Xβ̄ν̄ = 0 except for Xβν = 1.

⇒
∑

R

(

Γ(2)(R)
)

αβ

(

Γ(1)
(

R−1
)

)

νµ
= 0.

By unitarity this reads

∑

R

(

Γ(2)(R)
)

αβ

(

Γ(1)(R)
)

µν

∗

= 0.

This implies δij on the right hand side of the Great Theorem.

Second step: Choose now Γ(1) and Γ(2) as equivalent representations:

M =
∑

R

Γ(R)X Γ(R−1)

It can be checked that it commutes with all Ai in G. But then by Schur’s lemma M = c 1 for
some constant c.

⇒ c δµµ′ =
∑

R

∑

ν̄ ,ρ̄

(Γ(R))
µ,ν̄

Xν̄ρ̄

(

Γ
(

R−1
))

ρ̄µ′

Then set X = 0 except Xνρ =1.

cνρ δµµ′ =
∑

R

(Γ(R))
µν

(

Γ
(

R−1
))

ρµ′

The c constant depends on the choice of X. To get cνρ we sum over µ = µ′:

cνρ

∑

µ

δµµ�
l

=
∑

R

∑

µ

(

Γ
(

R−1
))

ρµ
(Γ(R))

µν�
=
(

Γ
(

R−1R
))

ρν

=
∑

R

1ρν = g 1ρν

⇒ cνρ =
g

l
δνρ

Unitarity:
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So
∑

R

(Γ(R))
µ′ν ′

∗
(Γ(R))

µν
=

g

l
δµµ′δνν ′

Combining the two steps the theorem is proved. �

Implications of the great theorem.

1. Viewing the numbers (Γ(i)(R))µν as components of a set of vectors in a g = |G|-dimen-
sional space and i, µ, ν enumerate the different vectors.

⇒
∑

i

(li)
2
6 g

since the left hand side is
∑

i,µ,ν
= all g-dimensional vectors, which are all orthogonal

to each other by the Great Theorem. In fact we will later show that the equality is true:
∑

i

(li)
2 = g

Example: |D3|= 6= 12 +12 + 22 is the unique solution as we will see below.

2. Orthogonality for characters:

a. Set µ = ν (χΓ(i)) and α = β (χΓ(j)) and
∑

µ,α

⇒
∑

R

χ(i)(R)∗χ(j)(R)=
∑

µ,α

g

li
δij δµαδµα�

=δµµ→li

= g δij

⇒
∑

k

χ(i)(Ck)
∗χ(j)(Ck)Nk = g δij

where N is the number of elements in Ck.

1) i.e. the rows in the character table are orthogonal.

2) Number of irreducible representations = number of classes.

|D3|=6 = 12 + 12 +22

b. Form the square matrix

Q =







χ(1)(C1) χ(1)(C2) 

χ(2)(C1) 
� 





and consider

Q′=
1

g







χ(1)(C1)
∗
N1 χ(2)(C1)

∗
N1 


χ(1)(C2)
∗
N2� 





Can check

(Q Q′)
ij

=
∑

k

χ(i)(Ck)χ
(j)(Ck)

∗
Nk

g
= δij

⇒ Q′= Q−1

⇒ (Q′ Q)
ij

= δij

⇒
∑

i

χ(i)(Ck)
∗
χ(i)(Cl) =

g

Nk
δkl

i.e. the columns in the character table are orthogonal.
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