2009-09-07 Lecturer: Bengt E W Nilsson
Let’s start by discussing finite groups.

Chapter 1: Finite groups

DEFINITION: A group G is a set (finite or infinite, ...) of elements g € G with a composition law
Ny —

. . . . discrete cases
satisfying the following axioms:

i If 1€G,92€G, then g1-go=g3€G. (It is a closed set, in this sense.)

ii. It is associative: for g1, g2, g3 € G, then
g1-(92-93)=(91- 92) - 93

where brackets tell you the order of the operations.

(Example of sets not satisfying this: octonions.)

iii. There exists a unit e € G which is unique, such that eg=ge=g for all g€ G.

iv. For any g € G there exists a unique element ¢~' € G such that gg~!=g¢g " 1g=e.
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EXERCISE 1. Show that in (iv) one can demand gg~'=e and derive g+ g=e.
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EXERCISE 2. Show that the uniqueness of g~ can be derived instead of postulated.

EXERCISE 3. Rewrite (glgg)_1 as a product of inverses if g1 g2 g2 g1.

Read FS § 4.2.

Overview of simple groups

Simple groups cannot be split into a sum of sets of smaller groups. Simple groups can be com-
pletely classified (except in some complicated cases).

A. Finite groups.

Finite groups have a finite number of elements. The number of elements is called the order.
(There is a wider class: discrete groups, with finite or infinite number of elements.)

Complete classification:
e 4 infinite series
e 26 sporadic cases. (Example: Monster.)

B. Lie groups.

The elements depend on a number of continuous parameters. The number of continuous para-
meters is called the dimension of the group.

B1. dim =finite
This include the rotation group in space, parametrised by three Euler angles.

Cartan classification:

e 4 infinite series: A, By, Cn, D,. These are called classical.



e Exceptional groups: Go, Fs, Eg, E7, Es.

B2. dim =infinite

Sometimes these are only known as Lie algebras.

Kac—Moody, Virasoro, (critical phenomena, phase transitions, string theory)
Diff(M), (general relativity)

Borcherds algebras.

Lie groups are smooth manifolds.
ExaMPLE: SU(2).
A 2 x 2 matrix with complex entries, satisfying UTU =1 = det U =+ 1. If det U = + 1 we have

SU(2).
U— o J6] a=x1+ixo
— ﬂ a )’ ﬁ:$3+i$4
detU=|a]?+ |3 =2i+25+ai+ai=1
This is S3.
Note: S is simply connected.
What is the group SO(3)?
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Figure 1. Half S3 with cross cap.

EXERCISE 4: Make a double-loop across the cross cap trivial.

Figure 2. Trivial and non-trivial loops on half S3 with cross cap.

(Read FS § 9.1)

Comment: In quantum mechanics we deal with representations of SU(2) (i.e. its Lie algebra) of
spin j=0, 7,1,3, ...
But for the groups:

SU(2): all j values possible (tensors and spinors)
SO(3): only j integer possible (tensors)
Finite groups (see Tinkham)

We will now introduce a number of concepts and derive some theorems. Consider the following
example of an abstract finite group called Ds.

D3:{E,A,B,C,D,F}



(E is the unit element) with multiplication table

i\j|I[E A BCDF
E|EABCDTF
A|lAEDFBC
B|BFEDCA
Cc|c DFEAB
D|DCABTFE
F|F BCAED

Entry g:;=gi- 9;.

EXAMPLE: AB=D+ BA=F. So D3 is non-abelian.

DEFINITION. Abelian iff g1 go= g2 91 Vg1, 92 € G.

EXAMPLE: ¢1(g2 g3) = (9192) 93V g; € G. Can be checked.

DEFINITION: The number of elements = |G| =order, is called the order. (|Ds| =6).
Comment: The whole group D3 can be generated by two nontrivial (#£ E) elements.

This abstract group can be realised in many ways. Here are two:

1. As symmetry operations acting on an equilateral triangle:

Figure 3. Fixed numbers on the corners. A, B, C are space-fixed axes.

E: trivial (no operation).

A, B, C: flips around the corresponding axis.
D,F: 2r/3 and — 27 /3 rotation L the triangle.
AB=D.

B: oA} — 5AY

A: zAé - 3A12

D: 5A — 3AL

2. Matrices.

Consider the matrices:

18 1
— 2 2 — 2 2
B= vio o1 | C= V3 o1
2 2 T2 2
1w _1 v
— 2 2 — 2 2
b= s o1 F V3 1
T2 2 2 2

Again A B=D etc.

These matrices are called a (matrix) representation of Ds.



In this case of 2 x 2 matrices all elements in D3 are different = faithful representation.
Note that E=D =F =1, A= B =C = —1 (1 x 1 matrices) satisfy the multiplication
table. In this case the map from D3 to {1, — 1} is an homomorphism. When the repres-
entation is faithful the map is an isomorphism.

Homomorphism: many — one map.

Isomorphism: one — one map. (FS pages 65 and 54)

DEFINITION: A representation (here matrix) must satisfy that
AB=D = T(A)-I(B)=T(D).
Some general facts:

e Rearrangement theorem.

From the multiplication table of D3 we see that each row and each column contains every
element once —i.e. just a rearrangement.

Proof. Fix Ay, then the set of elements E Ay, Ay Ay, A2Ak, ..., A|g|Ax will contain any element
in G since for any A; to appear in this list we use an A, such that A,.Ax = A; which always
exists since A, = AiA,;l and since the number of elements is the same the theorem follows. O

e If a subset of elements H of those in G satisfy the group axioms it is called a subgroup of

G.

ExAMPLE: For any element in D3 we can form cyclic subgroup

{E, X, X% X3 ... X" 1}
such that X" =F.
In D3, if X =A then n=2. A2=F.
If X=Dthenn=3. D3=FE.

Cosets

Let H={FE,Bsy,..., B} be a subgroup of G={FE, A, ..., A|g|}. Then Hz, for any x € G, refers
to aset {EFx, Box, Bz, ..., By} called the right coset. The left coset is denoted x H and
works in the same way. Note: if © € H the cosets are just H themselves. (Rearrangement the-
orem.) If x ¢ H then x H and H x are not groups, since the unit element E does not appear in
these cosets.

In fact: H and Hx for ¢ H are disjoint sets.

Proof. Assume the opposite:

Bi - = Bj
S %H c
=2 =B; 'B; € H. Contradiction. O

Notation: G/H is the set of left cosets. (Lie algebra: G/H is a coset space.)

Hence: G can be divided into a set of distinct subsets.
G={H,Hxo,Huxs,...,hx;}
where [ is the number of (distinct) cosets.
Gl =|H]1
EXAMPLE: |D|=6=3-2.
— |H|=3,1=2. (This is the rotation.)
— |H|=2,1=3. (This is the flip.)



