
2009–09–07 Lecturer: Bengt E W Nilsson

Let’s start by discussing finite groups.

Chapter 1: Finite groups

Definition: A group G is a set (finite or infinite�
discrete cases

, ...) of elements g ∈ G with a composition law

satisfying the following axioms:

i. If g1∈G, g2∈G, then g1 · g2 = g3∈G. (It is a closed set, in this sense.)

ii. It is associative: for g1, g2, g3∈G, then

g1 · (g2 · g3)= (g1 · g2) · g3

where brackets tell you the order of the operations.

(Example of sets not satisfying this: octonions.)

iii. There exists a unit e∈G which is unique, such that e g = g e = g for all g ∈G.

iv. For any g ∈G there exists a unique element g−1∈G such that g g−1 = g−1 g = e.

Exercise 1. Show that in (iv) one can demand g g−1 = e and derive g−1 g = e.

Exercise 2. Show that the uniqueness of g−1 can be derived instead of postulated.

Exercise 3. Rewrite (g1g2)
−1 as a product of inverses if g1 g2� g2 g1.

Read FS § 4.2.

Overview of simple groups

Simple groups cannot be split into a sum of sets of smaller groups. Simple groups can be com-
pletely classified (except in some complicated cases).

A. Finite groups.

Finite groups have a finite number of elements. The number of elements is called the order .
(There is a wider class: discrete groups, with finite or infinite number of elements.)

Complete classification:

• 4 infinite series

• 26 sporadic cases. (Example: Monster.)

B. Lie groups.

The elements depend on a number of continuous parameters. The number of continuous para-
meters is called the dimension of the group.

B1. dim= finite

This include the rotation group in space, parametrised by three Euler angles.

Cartan classification:

• 4 infinite series: An, Bn, Cn, Dn. These are called classical.
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• Exceptional groups: G2, F2, E6, E7, E8.

B2. dim= infinite

Sometimes these are only known as Lie algebras.

Kac–Moody, Virasoro, (critical phenomena, phase transitions, string theory)

Diff(M), (general relativity)

Borcherds algebras.

Lie groups are smooth manifolds.

Example: SU(2).

A 2 × 2 matrix with complex entries, satisfying U †U = 1 ⇒ det U = ± 1. If det U = + 1 we have
SU(2).

U =

(

α β

− β̄ ᾱ

)

,

{

α =x1 + ix2

β =x3 + ix4

detU = |α|2 + |β |2 = x1
2 + x2

2 + x3
2 +x4

2 = 1

This is S3.

Note: S3 is simply connected .

What is the group SO(3)?

(

3× 3
real

)�
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, RTR = 1

RP 3.

Figure 1. Half S3 with cross cap.

Exercise 4: Make a double-loop across the cross cap trivial.

Figure 2. Trivial and non-trivial loops on half S3 with cross cap.

(Read FS § 9.1)

Comment: In quantum mechanics we deal with representations of SU(2) (i.e. its Lie algebra) of

spin j =0,
1

2
, 1,

3

2
,	

But for the groups:

SU(2): all j values possible (tensors and spinors)
SO(3): only j integer possible (tensors)

Finite groups (see Tinkham)

We will now introduce a number of concepts and derive some theorems. Consider the following
example of an abstract finite group called D3.

D3 = {E, A, B, C, D, F }
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(E is the unit element) with multiplication table

i\j E A B C D F

E E A B C D F

A A E D F B C

B B F E D C A

C C D F E A B

D D C A B F E

F F B C A E D

Entry gij ≡ gi · gj.

Example: A B = D� B A= F . So D3 is non-abelian.

Definition. Abelian iff g1 g2 = g2 g1 ∀g1, g2∈G.

Example: g1(g2 g3)= (g1g2)g3∀gi∈G. Can be checked.

Definition:The number of elements = |G|= order, is called the order . (|D3|= 6).

Comment: The whole group D3 can be generated by two nontrivial (� E) elements.

This abstract group can be realised in many ways. Here are two:

1. As symmetry operations acting on an equilateral triangle:

Figure 3. Fixed numbers on the corners. A, B, C are space-fixed axes.

E: trivial (no operation).

A, B, C: flips around the corresponding axis.

D, F : 2π/3 and − 2π/3 rotation ⊥ the triangle.

A B = D.

B: 2∆1
3 → 2∆3

1

A: 2∆3
1 → 3∆2

1

D: 2∆1
3 → 3∆2

1

2. Matrices.

Consider the matrices:

E =

(

1 0
0 1

)

, A=

(

1 0
0 − 1

)

B =





−
1

2

3
√

2

3
√

2

1

2



, C =





−
1

2

3
√

2

−
3

√

2

1

2





D =





−
1

2

3
√

2

−
3

√

2
−

1

2



, F =





−
1

2
−

3
√

2

3
√

2
−

1

2





Again A B =D etc.

These matrices are called a (matrix) representation of D3.
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In this case of 2 × 2 matrices all elements in D3 are different ⇒ faithful representation.
Note that E = D = F = 1, A = B = C = − 1 (1 × 1 matrices) satisfy the multiplication
table. In this case the map from D3 to {1, − 1} is an homomorphism . When the repres-
entation is faithful the map is an isomorphism.

Homomorphism: many → one map.

Isomorphism: one → one map. (FS pages 65 and 54)

Definition: A representation (here matrix) must satisfy that

AB = D :
Γ

Γ(A) ·Γ(B)= Γ(D).

Some general facts:

• Rearrangement theorem.

From the multiplication table of D3 we see that each row and each column contains every
element once → i.e. just a rearrangement.

Proof. Fix Ak, then the set of elements E Ak, A1 Ak, A2Ak, 	 , A|G|Ak will contain any element

in G since for any Ai to appear in this list we use an Ar such that ArAk = Ai which always

exists since Ar = AiAk
−1 and since the number of elements is the same the theorem follows. �

• If a subset of elements H of those in G satisfy the group axioms it is called a subgroup of
G.

Example: For any element in D3 we can form cyclic subgroup

{E, X, X2, X3,	 , Xn−1}

such that Xn = E.

In D3, if X =A then n = 2. A2 = E.

If X = D then n = 3. D3 =E.

Cosets

Let H = {E, B2,	 , B|H |} be a subgroup of G= {E, A2,	 , A|G|}. Then H x, for any x∈G, refers

to a set {E x, B2 x, B3 x, 	 , B|H | x} called the right coset . The left coset is denoted x H and
works in the same way. Note: if x ∈ H the cosets are just H themselves. (Rearrangement the-
orem.) If x � H then x H and H x are not groups, since the unit element E does not appear in
these cosets.

In fact: H and H x for x � H are disjoint sets.

Proof. Assume the opposite:

Bi�
∈H

· x�� H

= Bj�
∈H

⇒x =Bi
−1Bj ∈H . Contradiction. �

Notation: G/H is the set of left cosets. (Lie algebra: G/H is a coset space.)

Hence: G can be divided into a set of distinct subsets.

G = {H, H x2, H x3,	 , h xl}

where l is the number of (distinct) cosets.

|G|= |H | · l

Example: |D |=6 = 3 · 2.

— |H |=3, l = 2. (This is the rotation.)

— |H |=2, l = 3. (This is the flip.)
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