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Tensors and Geodesics

1. Describe in one sentence what the orbit of the Moon, the trajectory of a falling apple
and the trajectory of a bullet have in common according to Einstein.

2. Assume that AµBµν is a covariant vector for all contravariant vectors Aµ. Show that
Bµν transforms as a tensor. Also prove that gµν , defined as the inverse of the metric
gµν is a second rank contravariant tensor. (Hint: Assume that it does transform as a
contravariant tensor, and use the fact that the inverse of a matrix is unique.)

3. A fluid is consisting of point particles of rest mass m moving to the right along the x-
axis with a gamma-factor of 2 and number density n, as seen from a certain coordinate
system. What is the (space-averaged) energy momentum tensor for this configuration?
If one also introduces a second set of particles , identical to the ones described above,
but moving moving to the left through the right moving particles, what then is the
energy momentum tensor?

4. Consider the Levi-Civita symbol, or the epsilon symbol, defined by ǫ0123 = 1 and total
antisymmetry in the four indices. Show that ǫµνκλ is a tensor density of weight −1.

Show that the invariant integration measure is d4x
√
− det g, i.e., that

∫

d4x
√

− det gφ(x)

is independent of the choice of coordinates when φ is a scalar.

5. Determine all time-like geodesics and the affine connection for the space-time described
by the two-dimensional metric

dτ2 =
1

t2
dt2 −

1

t2
dx2.

6. Determine all geodesics for the two-dimensional metric,

dτ2 = t4dt2 − t2dx2 .

7. Three-dimensional anti-deSitter space (AdS3) is described by the metric

ds2 = −du2 − dv2 + dx2 + dy2,

where the coordinates are confined to the hyperboloid

−u2 − v2 + x2 + y2 = −b2.



Change coordinates according to

u =
√

b2 + r2 cos
t

b

v =
√

b2 + r2 sin
t

b
x = r cos φ

y = r sin φ

(check that this defines a valid set of coordinates on the hyperboloid). Using the metric
in the new coordinates, calculate the proper distance from the origin r = 0 to spatial
infinity r → ∞. Also find the coordinate time needed for a photon to travel this distance.

Curvature

8. Does the metric

dτ2 = dt2 − dx2 − dy2 − dz2 + 4cosh
x

2
[cosh

x

2
(dt + dx) − sinh

x

2
dy]dx

correspond to a curved space-time? How many positive and negative eigenvalues does
it have?

9. Does the metric

dτ2 = (1 − x2)dt2 − dx2 − dy2 − x2dz2 − 2x2dtdz

correspond to a curved space-time?

10. For a certain space-time of arbitrary dimension D, the curvature tensor has the form

Rµνρσ = f(gµρgνσ − gµσgνρ),

where f is a scalar function. Show that this curvature tensor has the appropriate sym-
metries. Show that f must be a constant if D ≥ 3. For which value of the cosmological
constant Λ is such a space-time a solution to Einstein’s equations?

11. Calculate the Ricci tensor and the curvature scalar for the metric

dτ2 = e2αdt2 − e2βdx2

where α and β are arbitrary functions of t and x.

12. As an example of a space with constant negative curvature, take the simplest example,
the two-dimensional ”Poincaré disk”. Its metric can be written as

ds2 =
dr2 + r2dφ2

(1 − r2

a2 )2
,



where 0 ≤ r < a and 0 ≤ φ < 2π (φ is an angle). What is the distance from a point
with coordinates (r, φ) to the ”boundary” r = a? Calculate the curvature tensor (note
that in two dimensions, there is only one independent component, given the properties
on p. 141, so it is enough to calculate R1212), the Ricci tensor and the curvature scalar.
Compare to the corresponding results for a two-dimensional sphere.

13. Consider the d-dimensional geometries described by the metrics

(1) ds2 =
−dt2+δijdxidxj

t2
,

(2) ds2 =
dy2+ηαβdxαdxβ

y2 ,

where δ and η are metric tensors for flat euclidean and minkowskian (d−1)-dimensional
space, respectively. Calculate the curvature tensor in both cases, and describe the spaces
in words.

The Schwarzschild Solution

14. Is it possible to see oneself from behind, standing outside a black hole? In other words,
are there any closed photon orbits?

15. Two identical atoms are at rest at radii R1 and R2 in a gravitational field with Schwarz-
schild metric. When observed locally, these atoms emit radiation at frequency ν. An
observer at a very large distance (r → ∞) measures frequencies ν1 and ν2, respectively.
Find the ratio ν1/ν2.

16. An astronaut is orbiting the earth in a spaceship. She has chosen the altitude of her
(circular) orbit carefully, in order to make her on-board clock tick at the same rate as a
clock at rest on the surface of the earth. Neglecting the rotation of the earth, calculate
this altitude.

17. Determine the metric and the electric field outside a charged black hole, i.e., find a
static, spherically symmetric solution to Maxwell’s equations and Einstein’s equations
with the electromagnetic energy-momentum tensor. Under what circumstances does
this metric (the Reissner-Nordström metric) have a Schwarzschild singularity? Does a
proton have such a singularity?

18. (A variation on the previous problem.) Determine the metric and the electric field out-
side a charged black hole, i.e., find a static, spherically symmetric solution to Maxwell’s
equations and Einstein’s equations with the electromagnetic energy-momentum tensor.
(The solution should contain two parameters, the mass M and the electric charge Q.
They may be checked e.g. by inspecting the asymptotic behaviour of the solution at
spatial infinity.) Show that, unless M > Q (in suitable units), the solution has a sin-
gularity that is not surrounded by a horizon (similar to a Schwarzschild solution with
negative mass). Such solutions are expected to be “forbidden”; this is the so called
“cosmic censorship principle”.



19. A rotating black hole is described in the plane θ = π
2

by the metric

dτ2 = Adt2 + 2Cdtdφ − Ddφ2 − Bdr2,

where A = (1 − a
r
), C = ab

r
, D = r2 + b2(1 + a

r
) and B = r2

r2
−ar+b2

. In the case of the
Schwarzschild solution a = 2MG, while b is related to the total angular momentum of
the black hole. Consider a particle, initially at rest far away from the black hole, that
starts to fall towards it. Find an expression for dr

dτ
in terms of r. Show also that when

the particle approaches the black hole it will obtain an angular velocity dφ
dτ

which is
different from zero.

20. Derive the Schwarzschild metric in a space-time with arbitrary dimensionality D ≥ 4.
Using this result, investigate whether stable circular orbits exist in this geometry.

21. An astronaut has just landed on a small spherical asteroid of radius R = 5 km. The
astronaut height is d = 1.70 m and the height of the spaceship is D = 15 m. The astro-
naut can walk away from the spaceship a distance L (measured on the ground) before
she loses sight of the spaceship simply due to the curvature of the planet. Compute first
L by elementary geometry ignoring any gravitational effect. Now imagine the rather
absurd situation where the planet is replaced by a neutron star of mass M = 2 · 1030 kg
of the same radius R. Assume that the astronaut and the spaceship will not be crushed
by the gravity of the star. Including the effect of bending of the light compute the new
distance L′ that she can travel walking away from the spaceship before losing sight of
it.

22. On a neutron star of radius R = 5 km and mass M = 2 · 1030 kg two photons both
of wavelength λ = 300 nm are emitted 10 meters from the surface. One photon heads
towards the surface of the star and the other escapes towards the Earth. Compute the
wavelength of the photon reaching the surface as measured by an observer on the surface
of the star and the wavelength of the escaping photon as measured by an observer on
Earth.

23. A beacon radiating at a fixed frequency ν0 is released at time t = 0 towards a black hole
of mass M by an observer situated very far away from the black hole. The observer
stays at a constant distance from the black hole while the probe is falling. Show that
the frequency of the beacon (when it is close to the event horizon) as measured by the

observer can be written as ν ∼ e−
t
K for some constant K and relate the constant K to

the mass of the black hole.

24. A rocket is orbiting on a perfectly circular orbit around a black hole. To remain on
a fixed radius it needs a radial rocket-thrust, and thus a proper acceleration. How
does the proper acceleration α depend on the radius r and the angular velocity Ω of the
rocket? (Ω = dϕ/dt in the usual coordinates.) Verify that at r = 3MG, the acceleration
is independent of Ω. (Hint: α2 = gµν

Duµ

Dτ
Duν

Dτ
, where D means covariant differentiation

along a curve.)

25. A clock is shot up vertically from the surface of the Earth until it reaches a maximal
height h = 30.000 km and then falls down again. Ignoring the rotation of the Earth,
compute the total time delay between this clock and an identical clock on Earth at the
end of the journey.



26. Determine the deflection of a massive particle entering the solar system with velocity v,
gracing the sun at a distance d and thereafter leaving. v may be assumed to be large,
but less than c.

27. The metric of a rotating charged black hole can be written as:

dτ2 = (1 − f)dt2 − 2af sin2 θdtdφ − Σ(
dr2

∆
+ dθ2) − g sin2 θdφ2,

where

∆ = r2 − (2mr − Q2) + a2

Σ = r2 + a2 cos2 θ

f = (2mr − Q2)/Σ

g = r2 + a2 + fa2 sin2 θ

m2 > Q2 + a2

and m, Q, a, are mass, charge and angular momentum respectively and we set GN = 1.

For a circular orbit in the equatorial plane: θ = π/2 derive the law corresponding to
Kepler’s law Ω2 = m/r3 for an electrically neutral object with angular velocity Ω at a
radius r. Compute the time dilation factor for an observer moving in such an orbit, as
judged by a distant stationary observer.

28. a. The German astronaut Thomas Reiter has spent almost 6 months aboard the ISS.
Calculate the accumulated difference in elapsed time on the ISS and on earth after this
period of time.
b. Are general relativistic effects significant for time-keeping in the GPS system?

Symmetic Spaces and Cosmology

29. Prove that for a given space-time with a Killing vector ξµ(x), the scalar ξµPµ is a
constant of the motion for a freely falling particle.

30. A plane-fronted gravitational wave in the u-direction (which is light-like) may be de-
scribed by a metric ds2 = −2dudv + a2(u)dx2 + b2(u)dy2, where a and b are some
arbitrary functions. Determine all Killing vectors from the Killing equations. Check
that the infinitesimal transformations of the coordinates indeed leave the metric form-
invariant. Interpret, if possible, some of the Killing vectors.

31. Consider a toroidal surface embedded in flat three-dimensional euclidean space. With
(ρ,φ,z) being standard cylindrical coordinates and a/b being the radius of the torus/tube,
it can be parametrised as (ρ,φ,z) = (a + bcosθ,φ,bsinθ). Calculate the curvature scalar.
Comment on the sign of R for different points on the torus. Finally, determine all
Killing vectors in this space.



32. A four-dimensional space-time is descibed by the metric

ds2 = −2dudv + dx2 + dy2 − ω2(x2 + y2)du2 ,

where ω is a constant. Verify that the signature is (−1, 1, 1, 1). Find all Killing vectors
(some, but not necessarily all, are obvious in the sense that they don’t require calcula-
tion). Calculate the energy-momentum tensor for the matter or radiation that acts as
a source allowing this solution.

33. A generic Friedman-Robertson-Walker cosmology is described by a metric

dτ2 = dt2 − R2(t)(dx2 + dy2 + dz2)

with a generic function R(t). Making a suitable coordinate transformation show that
the metric can be re-written as

dτ2 = f2(t)(dt2 − dx2 − dy2 − dz2)

and find the expression of f(t) in terms of R(t). Compute the geodesic equations in the
new metric.

34. Show, or argue in a convincing way, that the three spatially homogeneous and isotropic
solutions to Einstein’s equations with a cosmological constant, i.e., the cases with k =
0,±1, describe the same space-time.

35. The metric outside a straight, infinitely long cosmic string along the z-axis is

dτ2 = dt2 − dr2 − (1 − 8mG)r2dα2 − dz2,

in cylindrical coordinates (0 ≤ α ≤ 2π). Here m denotes the mass per unit length of
the string. Show that the metric is flat and that a distant object, situated behind the
string, yields a double image.

36. A galaxy acts a gravitational lens for a very distant quasar. The galaxy is 100 Mpcs
away, and the distance to the quasar can be assumed to be much greater. The image is
a ring with radius 1.0 arcsec. What is the mass of the galaxy? Express in solar masses.

37. The temperature of the background radiation of the universe is ≈ 2.7 K. The Hubble
parameter is measured to be ≈ 70 (km/s)/Mpc. Suppose (somewhat contrary to the
present observational status) that the universe is matter-dominated with exactly crit-
ical energy density, and has been so since atoms formed, matter became uncharged,
electromagnetic radiation decoupled from matter and the universe became transparent.
This transition can be assumed to have taken place at a temperature which is typical for
atomic binding energies, T ≈ 5 eV. Assume also that the universe before this decoupling
was radiation-dominated. What is the age of the universe based on these measurements
and assumptions, and what was its age at the time of decoupling?

38. With the assumptions made in the previous problem, show that the microwave back-
ground radiation we receive from different directions come from regions that at the time
of decoupling were causally disconnected, i.e., no information with a common source
may have reached them during the time of existence of the universe.



(Still, the large-scale structure of the radiation is isotropic. This is the so-called “homo-
geneity problem” or “horizon problem”: how can these regions then “know” that they
should contain matter and radiation with the same density and temperature? It may be
solved by “inflation”: if the universe at some time underwent a very fast expansion, our
visible part of the universe may come from a causally connected region. Incidentally,
inflation can also solve the “flatness problem” and explain why the universe seems to
be so close to being flat.)


