
2008–12–11 Lecturer: Fredrik Ohlsson

We are out of problems, officially, since we have been working fast. We will be doing cosmology
exercises from the last exam.

37.

“The temperature of the background radiation of the universe is ≈ 2.7 K. The
Hubble parameter is measured to be ≈ 70(km/s)/Mpc. Suppose (somewhat con-
trary to the present observational status) that the universe is matter-dominated
with exactly critical energy density, and has been so since atoms formed, matter
became uncharged, electromagnetic radiation decoupled from matter and the uni-
verse became transparent. The transition can be assumed to have taken place at a
temperature which is typical for atom binding energies, T ≈ 5eV. Assume also that
the universe before this decoupling was radiation-dominated. What is the age of
the universe based on these measurements and assumptions, and what was its age
at the time of decoupling?”

Introducing some symbols for quantities mentioned above: The cosmic microwave background
radiation (CMB) temperature is T0 = 2.7 K, and the Hubble parameter is H0 = 70 km/s Mpc.
(The index 0 means “today”). Assume that the universe has exactly critical energy density
(which means that it is flat), and that the universe is matter-dominated and has been so since
the time of decoupling (at ED =5eV), and that it was radiation-dominated before decoupling.

Determine the age of the universe (t0) and the time of decoupling (tD)!

The temperature at decoupling was TD =ED/kB = 5.8× 104K. The equations governing the evol-
ution of the universe:
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ρ− k
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, (the Friedmann equation), H ≡ ȧ
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ρ̇ + 3 H(ρ + p)= 0, (energy conservation)

Equation of state: p = w ρ, where w = 0 for matter and w =
1

3
for radiation. Using p = ωρ and

flatness (k =0), we get
{
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ρ̇(t)+ 3H (1+ w) r(t)= 0
(1)
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∫
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∫

dt ⇒ a(t)3(1+2)/2 = C1 t +C2

Setting the Big Bang at t = 0, i.e. a(0)= 0, we get C2 = 0.

⇒ a(t) =C3 t2/3(1+w) (2)

For 06 t 6 tD we have w =
1

3
.

(2) ⇒ ȧ(t)=
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where HD = H(tD). We cannot actually measure HD. We can measure H0. So we have to con-
sider the next era as well, the era of matter domination (w = 0), before we can determine HD.
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(This is Weinberg equation 15.3.3.) For k = 0 we have q0 =
1

2
. Equation (3) is valid for all t in

the interval tD 6 t 6 t0.
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Consider the CMB temperature scaling: T ∝ 1

a(t)
.

⇒ T (t1)
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In particular
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= 7.0× 1010 s= 2200 years

To determine t0 we use (3) again:
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Separable:
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√
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Integrate from tD to t0:
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⇒ (t0− tD)=
2

3H0

(

1−
(

aD

a0

)3/2
)

=
3

3H0

(

1−
(

T0

TD

)3/2
)

= 2.9× 1017 s= 9.3× 109 years

⇒ t0 = 9.3× 109 years.

38.

“With the assumptions made in the previous problem, show that the microwave
background radiation we receive from different directions come from regions that
at the time of decoupling were causally disconnected, i.e., no information with a
common source may have reached them during the time of existence of the uni-
verse.
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(Still, the large-scale structure of the radiation is isotropic. This is the so-
called ‘homogeneity problem’ or ‘horizon problem’: how can these regions
then ‘know’ that they should contain matter and radiation with the same density
and temperature? It may be solved by ‘inflation’: if the universe at some time
underwent a very fast expansion, our visible part of the universe may come from a
causally connected region. Incidentally, inflation can also solve the ‘flatness
problem’ and explain why the universe seems so close to being flat.)”

In short: With the assumptions in 37, show that the CMB radiation we receive from different
directions come from regions that were causally disconnected at the time of decoupling!

Figure 1. Our past light-cone, and the future light-cone of a source.

Consider a signal with θ̇ = ϕ̇ = 0 in conformal time. ds2 = a(τ )
(

− dτ2 + dr2 + r2 dΩ2
)

. rH = τ2−
τ1. Convert to proper distance:

dH = a(τ2) (τ2− τ1) = a(t2)

∫
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From the previous problem
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The condition for the regions to be causally disconnected is simply dH2
> dH1

. With t0 = 9.3 ×
109 years and tD = 2.2 × 103 years, this condition is satisfied. The regions are causally discon-
nected!
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