
2008–12–09 Lecturer: Martin Cederwall

Yesterday we looked at solutions to Einstein’s equations describing the evolution of the universe.
I remind you again of the assumptions we put in. The basic assumption was that the universe is
homogeneous and isotropic. Or rather, there exists a choice of time, of time slices, where the
space part has these properties. This is a strong assumption, but it enabled us to write down a
solution where the universe was either spherical, flat or hyperbolic.

This is true to a very high degree, but as we mentioned yesterday, we know that we can’t see
the whole universe. That’s a fact. If we draw a picture with conformal time and radius, say, we
see light rays go like this 〈fig〉. Something happening outside our light cone is unknown to us.
The real, large scale universe, is not available to us. Thus, the assumptions we put into our
ansatz consist of an enormous extrapolation of what we can know. Nevertheless, the fact that
the universe was once very dense is a safe one.

k = 1: closed (spherical). That results in a recollapse, a big crunch.

k = 0,− 1: flat and hyperbolic. These give rise to eternal expansion.

But as we will see, as soon as we introduce the cosmological constant, this conclusion is not true
anymore. The reason we talk about this here, is that this seems to be a part of the real uni-
verse. So, what is a cosmological constant?

Cosmological constant

It is a possible term in Einstein’s equations. When we derived these we had a few assumptions:
general covariance (tensors on both sides). We had Rµν −

1

2
gµνR = − 8πG Tµν. This was essen-
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tially unique. It is unique when we say something more than general covariance: We wanted to
have second derivatives. That is nice, because it provides us with the Newtonian limit. But we
could relax the requirement of second order. We could have higher order derivatives — as long
as we write down tensors. Such modifications are often discussed in connection to string theory.
String theory gives rise to several subtle corrections. But we could also go down, to fewer deriv-

atives. Rµν −
1

2
gµνR − Λgµν = − 8πG Tµν. The sign before Λ is only convention [and Martin

Cederwall is unsure of which convention he wants to use]. Λ is called the cosmological constant.
Einstein introduced this constant himself when he developed his theory. He realised that when
he tried to look at the large-scale stuff that his equations did not allow for a static universe,
which was catastrophic. No one had ever considered the possibility of a non-static universe. A
hundred years ago, the expansion was not known at all. Einstein tried to modify his equations
to add a force which would prevent the universe from evolving. Then he took it away again, and
thought this was an embarrassing mistake. It is unclear why he thought this was such a mistake,
I don’t feel he should have been embarrassed.

We could see what happens when we try to solve Einstein’s equations with this term. We could
also try to move it to the other side of the equations, and think of it as a modified energy-
momentum tensor, like this:

Rµν −
1

2
gµν =− 8πG

(

Tµν −
Λ

8πG
gµν

)

[Martin chases minus signs and conventions. He calls Weinberg’s sign convention an abnormal
convention, and warns that the material about cosmology linked from the course home page has
a different sign convention for the Riemann curvature tensor.]

This means that we have an energy density ρ and a pressure p:

ρ =
Λ

8πG
, p =−

Λ

8πG

Think of Λ as positive. Then we have a positive energy density, and negative pressure. You
might draw the conclusion — which is wrong — that a negative pressure would tend to pull the
universe back together, but it is the other way around. We will discuss this when solving the

equations. Anyway, the parameter w = − 1 here. (Remember w = 0 for dust, and w =
1

3
for radi-

ation.) This behaves very differently. It is like an energy that resides in the vacuum itself.

Let’s look at the equations. We solve the equations for the case where Tµν = 0, so that we do
not mix different values of w. That is not something to be done analytically (you can do it
numerically). Normally, some type of energy dominates, and since Λ is constant, this one does
not get diluted as the universe expands. We just get more of it, in total. The density remains
the same.

We use the equations we had before, noting that at least some of them do not hold for this par-
ticular value of w.

The Friedmann equation:

(

ȧ

a

)2

=
8πG

3
·

Λ

8πG
−

k

a2

We are keeping all the three possibilities for k: flat (k = 0), spherical (k = 1) and hyperbolic (k =
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− 1). This is not a difficult equation to solve:

ȧ2 =− k +
Λ

3
a2

Take the case when Λ > 0. If Λ > 0 we have all three possibilities for k. If Λ is negative, since
the left hand side is positive, we can only have positive k. (Remember how we reasoned about
the critical density ρc.) Positive cosmological constant means

k = 1 ⇒ a(t)=
3

Λ

√

cosh

(

Λ

3

√

t

)

There should be some integration constant also, but we can shift time by some constant. We
don’t write any constant and let the time t = 0 be determined by the above. As t → ∞ this
expands exponentially.

k =0 ⇒ a(t) =
3

Λ

√

exp

(

Λ

3

√

t

)

You might have expected something different, but this also goes exponentially for large t.

k =− 1 ⇒ a(t)=
3

Λ

√

sinh

(

Λ

3

√

t

)

Figure 1. The solutions for different values of k look similar for large t, but closer to t = 0 they look

very different. The k =− 1 solution, a(t)=
3

Λ

√

sinh

(

Λ

3

√

t

)

, goes to zero as t→ 0.
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What do these three solutions represent? Fact is that they represent the same solution. That is
not obvious. ds2 = dt2 + a2(t) ds̃2. Take this and calculate the affine connection and the
curvature tensor, and you will find that in all these cases, the space is maximally symmetric.

This is what is called “de Sitter space”.

Rµνρσ ∝ gµρ gνσ − gµσ gνρ

That tells us that the space is maximally symmetric. Given the value of the scalar curvature,
the maximally symmetric space is unique. Embedding in one dimension higher: de Sitter space
is embedded in one time, and several spatial directions, and is a hyperboloid.

Figure 2. Hyperboloid: de Sitter space. Coordinates x0, x1,� , xD.

ds2 =−
(

dx0
)2

+dxidxi

−
(

x0
)2

+xixi = 1 (R2)
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1. One way to do this is to say x0 = sinh(t), xi = cosh t · ξi, where |ξi|=1 (lies on a sphere).

⇒ ds2 =− dt2 + cosh2 t dΩ2

This leads directly to the k = 1 situation (and then there is some re-scaling, to get the right
radius). The other ones are trickier. The first is better, in that this describe the entire de Sitter
space. The other ones, k =0 and k =− 1 only describes parts of de Sitter space.

2. I had to look this up. It is not obvious at all:















x0 =
1

2

[

et −
(

1+ y2
)

e−t
]

xD =
1

2

[

et +
(

1− y2
)

e−t
]

xi = e−tyi i,� , D − 1

So, de Sitter: maximally symmetric, exponential expansion. That’s the important points here.

And that with negative pressure. If you exert pressure (divide the universe into small volumes)
when the area moves, it will do work. A positive pressure will do positive work. If there is a
pressure, the energy inside will go down. That’s what energy conservation says. What it says in
this case, since the pressure is negative, the energy inside will increase. It is easy to get very
confused about this. A first reaction may be, is there not a violation of conservation of energy
here? This is just energy conservation. Because there is negative pressure, when the boundary
expands, you get energy instead of loosing it. There is nothing built into energy conservation
that makes this unlikely to happen. There is no resistance to creating new energy.

This is the case relevant for cosmology. This is what happens. Not only this, but this plays an
important role in the development of the universe.

Λ < 0: For completeness, let us also consider a negative cosmological constant. k = − 1 is the
only possibility here, since we need a positive ȧ2. In this case we get a sine:

a =
3

|Λ|

√

sin

(

|Λ|

3

√

t

)

It looks like we get a big bang at t = 0, and then a big crunch some time later. This is not
entirely true. It is because of the choice of coordinates. This is a maximally symmetric space;
this is anti-de Sitter space. We visualise this embedded in a space with two times:
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Figure 3. Anti-de Sitter

Circular. But you don’t have to have a cyclic time. You could visualise it as a roll of toilet
paper, where you are on a new sheet after moving one revolution. String theory is full of this
kind of spaces, with negative cosmological constant.

At very early times in the universe, Λ is not likely to have been important, so these solutions are
not really our universe. But if it stays when the universe expands and becomes dominant, the
future of the universe will look like exponential expansion.

In real life, you have different kinds of matter, and we have different values of w. You get some
very non-linear equations, and you need to solve them numerically. Thus, in more generality:

Tµν =
∑

Tµν
(i)

where i enumerates the different kinds of energy, with different w(i) leading to different ρ(i)(a).
There can be a number of complications. Some types of energies may interact with each other.

If they are not interacting Tµν
(i)

are conserved individually, but in general it is only Tµν that is

conserved. This becomes especially tricky when you don’t have thermal equilibrium: atoms are
just forming, radiation is decoupling, ... You might approximate and say that this is a very
quick process, and patch solutions in the simpler times. We won’t do any of those calculations,
at all.

Remember Ω(i) = ρ(i)/ρc. ΩB (B for baryonic: atomic nuclei) ΩB ≈ 0.04. But this is not the only

type of matter available. There is one specific type of experiment that is very important. There
is a particular type of supernova, where a white dwarf eats material from an adjacent star. They
always happen in pretty much the same way, with the same luminosity. That enables us to say
something about the distance, the redshift and the expansion of the universe. We need more
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matter. (With matter, I mean something with w≈ 0).

Ωdark matter ≈ 0.26. This is not atoms. It is not any known elementary particles. We don’t know
what it is, but it is a lot more than the matter we see. There are other ways to detect it, e.g.
galaxy dynamics. Galaxies move as though there is a lot more matter. If we are really lucky,
this could be detected at the LHC.

Ωradiation ≈ 0. Radiation is very small, in this context.

Ωdark energy ≈ 0.7. Something with w = − 1. This is a mystery. We have no idea what it is. (Or
rather, there are lots of ideas ...) It is something completely covariant (does not break symmet-
ries like the luminiferous ether does).

Ωtotal≈ 1.

In the very early universe, there was something like a cosmological constant for a while, making
the universe expand exponentially.

Observation (by observing the expansion of the universe) Λ≈
(

10−3 eV
)4

≈ 10−2 J/m3.

In gravity, energy is an absolute concept. In Newtonian mechanics we can shift the energy with
a constant, but that does not work here.

Is Λ small or big? Is there anything to compare with?

There is a natural thing to compare with: Planck length, or Planck energy:

Planckmass=
~ c

G

√

≈ 1019 GeV≈ 20µg

(Don’t trust anything when we get near the Planck length. We don’t even know what space-
time is at that scale.)

This is 1030 times larger than the energy scale defined by the cosmological constant. Λ is
1030 “too small”.

Λ could be a property of the vacuum, but why it is so small is not known. It could be
something else.

Figure 4. This is our universe. It looks like the cosmological constant is just starting to take over.
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