Plan: Einstein's equations for the universe. What we need is:

- Ansatz for the metric. Observations of the universe: the spatial part is homogeneous and isotropic - maximally symmetric at a given time (for a given time coordinate). This leads us to the left hand side of Einstein's equations.
- Models for matter and energy. This is needed for the right hand side.

Metric by embedding: Embed the space in a space with one more dimension. If we do that in a nice way, we know that we have all of the symmetry. Consider $(D+1)$-dimensional space (or spacetime) with $\mathrm{d} s^{2}=\ldots$ The coordinates we want to use are $x^{\mu}, \mu=0, \ldots, D-1$ and $x^{D}=z$. We are going to eliminate z at the end. $\mathrm{d} s^{2}=C_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\ldots$ for some constant matrix $C_{\mu \nu}$. (We can always change coordinates to any such matrix with the same sign signature.) $\mathrm{d} s^{2}=$ $C_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}+\frac{1}{K} \mathrm{~d} z^{2}$. This is just a flat space. In order to get down to the D-dimensional space, we restrict to a surface where $C_{\mu \nu} x^{\mu} x^{\nu}+\frac{1}{K} z^{2}=\frac{1}{K}$. This is a sphere or hyperboloid, of some kind. This K happens to be the same K that was mentioned yesterday: minus the scalar curvature.

We want to get rid of z, so we take

$$
K C_{\mu \nu} x^{\mu} x^{\nu}+z^{2}=1
$$

and differentiate:

$$
K C_{\mu \nu} x^{\mu} \mathrm{d} x^{\nu}+z \mathrm{~d} z=0
$$

($C_{\mu \nu}$ is a symmetric matrix, of course.) This enables us to eliminate z. To simplify notation, let
us define $\mathrm{d} x \cdot \mathrm{~d} x \equiv C_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}$.

$$
\begin{gathered}
K x \cdot \mathrm{~d} x+z \mathrm{~d} z=0 \\
\mathrm{~d} z^{2}=\frac{K^{2}\left(x \cdot \mathrm{~d} x^{2}\right)}{z^{2}}=\frac{K^{2}(x \cdot \mathrm{~d} x)^{2}}{1-K x^{2}}, \quad x^{2} \text { meaning } x \cdot x, \text { in the same notation. } \\
\mathrm{d} s^{2}=\mathrm{d} x \cdot \mathrm{~d} x+K \frac{(x \cdot \mathrm{~d} x)^{2}}{1-K x \cdot x}
\end{gathered}
$$

Choose $C_{\mu \nu}=|K|^{-1} \eta_{\mu \nu}$ where $\eta_{\mu \nu}$ is a diagonal matrix with only ± 1.

$$
\mathrm{d} s^{2}=|K|^{-1}\left(\mathrm{~d} x^{2}+k \frac{x \cdot \mathrm{~d} x}{1-k x^{2}}\right), \quad \text { where } \mathrm{d} x^{2} \text { is taken with } \eta_{\mu \nu} \text { and } \operatorname{sign}(K)=k \in\{+1,-1,0\} .
$$

Every scalar product above is taken with $\eta_{\mu \nu}: x^{2}=x^{\mu} x^{\nu} \eta_{\mu \nu}$
For $\eta=\mathbf{1}$:
$\left\{\begin{array}{l}k>0: \text { we have a sphere }(0, D+1) \rightarrow(0, D) \quad \text { (time dimensions, space dimensions) } \\ k<0: \text { hyperbolic space }(1, D) \rightarrow(0, D)\end{array}\right.$

Figure 1. $\eta=\mathbf{1}, k>0$. This is a sphere.

Figure 2. $\eta=\mathbf{1}, k<0$. This is a hyperbolic space, with embedding $(1, D) \rightarrow(0, D)$.

For $\eta=\operatorname{diag}(-1,1,1,1)$.

$$
\begin{cases}k>0: \text { de Sitter } & (1, D) \rightarrow(1, D-1) \\ k<0: \text { anti-de Sitter } & (2, D-1) \rightarrow(1, D-1)\end{cases}
$$

Figure 3. This is de Sitter.

Figure 4. Anti-de Sitter. Note that it is embedded in a space with two time directions.

For cosmology: The spatial part of the metric should be something like this:

$$
\mathrm{d} s^{2}=|K|^{-1}\left(\mathrm{~d} x^{2}+k \frac{(x \cdot \mathrm{~d} x)^{2}}{1-k x \cdot x}\right)
$$

where $|K|^{-1}$ is just some normalisation factor (it will become time dependent, once we start doing cosmology). Euclidean signature, $D=3$.

$$
\begin{gathered}
\mathrm{d} x^{2}=\mathrm{d} r^{2}+r^{2} \mathrm{~d} \Omega^{2} \\
x \cdot \mathrm{~d} x=r \mathrm{~d} r \\
\mathrm{~d} s^{2}=|K|^{-1}\left(\mathrm{~d} r^{2}+\frac{k r^{2} \mathrm{~d} r^{2}}{1-k r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right)=|K|^{-1}\left(\frac{\mathrm{~d} r^{2}}{1-k r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right) \\
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t)\left(\frac{\mathrm{d} r^{2}}{1-k r^{2}}+r^{2} \mathrm{~d} \Omega^{2}\right)
\end{gathered}
$$

If the universe is a sphere a would be the radius. Otherwise, it is just a scale factor.

$$
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+a^{2}(t) \tilde{g}_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}
$$

Any function in front of t could always be absorbed into $a^{2}(t)$ by a coordinate transformation, so this will be enough for our ansatz. t is the proper time for an observer at rest.
Sometimes: $\mathrm{d} s^{2}=a^{2}(\tau)\left[-\mathrm{d} \tau^{2}+\tilde{g}_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j}\right] . \tau$ is not proper time. τ is "conformal time".
Affine connection:

$$
\Gamma_{00}^{0}=0, \quad \Gamma_{0 i}^{0}=0, \quad \Gamma_{00}^{i}=0
$$

Constant x^{i} is a geodesic.

$$
\Gamma_{i j}^{0}=a \dot{a} \tilde{g}_{i j}, \quad \Gamma_{0 j}^{i}=\frac{\dot{a}}{a} \delta^{i}{ }_{j}, \quad \Gamma_{j k}^{i}=\tilde{\Gamma}_{j k}^{i}
$$

Ricci ["You should do this yourself"]. Now for three spatial dimensions:

$$
R_{00}=3 \frac{\ddot{a}}{a}, \quad R_{i j}=-\left(a \ddot{a}+2 \dot{a}^{2}+2 k\right) \tilde{g}_{i j}
$$

Use

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=-8 \pi G T_{\mu \nu}
$$

or equivalently

$$
R_{\mu \nu}=-8 \pi G\left(T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T_{\lambda}^{\lambda}\right)
$$

$T_{\mu \nu}=$?
$T_{00}=\rho=$ energy density. $T_{0 i}=0$. We expect this to be zero. There is no natural vector where it could point. We have a symmetry in the metric. $T_{i j}=p g_{i j}=p a^{2} \tilde{g}_{i j}$. For the moment, p is just a letter. But we call it pressure. (We have to do it this way, because we did not go through the hydrodynamics.) Thus, the ansatz we want to use:

$$
\left\{\begin{array}{l}
T_{00}=\rho, \quad T_{0 i}=0 \\
T_{i j}=p g_{i j}=p a^{2} \tilde{g}_{i j} \\
T_{\mu}^{\mu}=-\rho+3 p
\end{array}\right.
$$

- "Dust" (i.e. "cold" matter, matter at low velocities):

$$
T_{\mu \nu} \propto P_{\mu} P_{\nu}
$$

where P_{μ} is the momentum of the particles. If they are at rest, we have

$$
T_{\mu \nu} \doteq\left(\begin{array}{c|ccc}
\rho & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { for dust }
$$

$p=0$ for dust.

- Radiation: Electromagnetism has $T^{\lambda}{ }_{\lambda}=0$. This means something, but I am not going to talk about it. This gives us $p=\frac{1}{3} \rho$. When we look at energy conservation, this has a very natural interpretation.

Generic situation for dust, radiation and maybe some other types of energy too, we have $p=w \rho$ for some constant w.

$$
\begin{gathered}
\operatorname{rhs} \propto T_{\mu \nu}-\frac{1}{2} g_{\mu \nu} T_{\lambda} \\
3 \frac{\ddot{a}}{a}=-4 \pi G(\rho+3 p): \text { acceleration equation } \\
a \ddot{a}+2 \dot{a}^{2}+2 k=4 \pi G a^{2}(\rho-p)
\end{gathered}
$$

Insert the acceleration equation into the later equation

$$
\dot{a}^{2}+k=\frac{8 \pi G}{3} a^{2} \rho: \quad \text { the Friedmann equation }
$$

Energy conservation we get from the zeroth component of $\mathrm{D}_{\mu} T^{\mu \nu}=0$. (It gives us no extra information, it is built into the Einstein equations. But it may give us a simpler equation to replace the acceleration or the Friedmann equation.) The i-components are empty: check!

$$
0=g^{\nu \lambda} \mathrm{D}_{\nu} T_{\lambda 0}=g^{00} \mathrm{D}_{0} T_{00}+g^{i j} \mathrm{D}_{i} T_{j 0}=
$$

Beware: $T_{j 0}=0$ does not imply that $\mathrm{D}_{i} T_{j 0}=0 . T_{j 0}$ is just one corner of a tensor, and the affine connection in D_{i} may mix different parts of the tensor.

$$
\begin{gathered}
=g^{00}\left(\partial_{0} T_{00}-2 \Gamma_{00}^{0}\left\langle T_{00}-2 \Gamma_{\not 00}^{i} T_{0 i}\right)+g^{i j}\left(\partial_{i} f_{j 0}-\Gamma_{i j}^{0} T_{00}-\Gamma_{i j}^{k} \not \Gamma_{k 0}-\Gamma_{i \not p}^{0} \not \Gamma_{j 0}-\Gamma_{i 0}^{k} T_{j k}\right)=\right. \\
=-\dot{\rho}-3 \frac{\dot{a}}{a}(\rho+p) \\
0=\underbrace{\dot{\rho} a^{3}+3 a^{2} \dot{a} \rho}_{=\frac{d}{d t}\left(\rho a^{3}\right)}+3 a^{2} \dot{a} p \\
\mathrm{~d}\left(\rho a^{3}\right)=-3 p a^{2} \mathrm{~d} a \\
\mathrm{~d}\left(\frac{4 \pi a^{3}}{3} \rho\right)=-4 \pi a^{2} p \mathrm{~d} a
\end{gathered}
$$

Volume times ρ equals energy. Area times p equals force.
Use conservation of energy together with Friedmann.

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} a}\left(\rho a^{3}\right)=-3 p a^{2}=-3 w \rho a^{2} \\
\rho(a) \propto a^{\alpha} \\
\frac{\mathrm{d}}{\mathrm{~d} a} a^{\alpha+3}=-3 w a^{\alpha+2} \\
\alpha+3=-3 w \\
\alpha=-3(w+1)
\end{gathered}
$$

Dust: $w=0 . \rho=\rho_{0} a^{-3}$. Very reasonable. The density goes down as the volume goes up.
Radiation: $w=\frac{1}{3} \cdot \rho=a^{-4}$. The wavelength grows as the universe expands. Physical!

