
2008–12–02 Lecturer: Martin Cederwall

Plan: Einstein’s equations for the universe. What we need is:

• Ansatz for the metric. Observations of the universe: the spatial part is homogeneous and
isotropic — maximally symmetric at a given time (for a given time coordinate). This
leads us to the left hand side of Einstein’s equations.

• Models for matter and energy. This is needed for the right hand side.

Metric by embedding: Embed the space in a space with one more dimension. If we do that in a
nice way, we know that we have all of the symmetry. Consider (D + 1)-dimensional space (or

spacetime) with ds2 =� The coordinates we want to use are xµ, µ = 0,� , D − 1 and xD = z. We
are going to eliminate z at the end. ds2 = Cµν dxµ dxν + � for some constant matrix Cµν. (We

can always change coordinates to any such matrix with the same sign signature.) ds2 =

Cµν dxµ dxν +
1

K
dz2. This is just a flat space. In order to get down to the D-dimensional space,

we restrict to a surface where Cµν xµ xν +
1

K
z2 =

1

K
. This is a sphere or hyperboloid, of some

kind. This K happens to be the same K that was mentioned yesterday: minus the scalar
curvature.

We want to get rid of z, so we take

K Cµν xµ xν + z2 = 1

and differentiate:

K Cµν xµ dxν + z dz = 0

(Cµν is a symmetric matrix, of course.) This enables us to eliminate z. To simplify notation, let

1



us define dx · dx≡Cµν dxµ dxν.

K x · dx + z dz = 0

dz2 =
K2
(

x · dx2
)

z2
=

K2(x · dx)
2

1−K x2
, x2 meaning x ·x, in the same notation.

ds2 = dx · dx+ K
(x · dx)2

1−K x ·x

Choose Cµν = |K |−1 ηµν where ηµν is a diagonal matrix with only ± 1.

ds2 = |K |−1

(

dx2 + k
x · dx

1− k x2

)

, where dx2 is taken with ηµν and sign(K)= k ∈{+1,− 1, 0}.

Every scalar product above is taken with ηµν: x2 = xµ xν ηµν

For η = 1:

{

k > 0: we have a sphere (0, D + 1)→ (0, D) (time dimensions, space dimensions)
k < 0: hyperbolic space (1, D)→ (0, D)

Figure 1. η =1, k > 0. This is a sphere.

Figure 2. η =1, k < 0. This is a hyperbolic space, with embedding (1, D)→ (0, D).
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For η = diag(− 1, 1, 1, 1).

{

k > 0: de Sitter (1, D)→ (1, D − 1)
k < 0: anti-de Sitter (2, D − 1)→ (1, D − 1)

Figure 3. This is de Sitter.
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Figure 4. Anti-de Sitter. Note that it is embedded in a space with two time directions.

For cosmology: The spatial part of the metric should be something like this:

ds2 = |K |−1

(

dx2 + k
(x · dx)

2

1− k x ·x

)

where |K |−1 is just some normalisation factor (it will become time dependent, once we start
doing cosmology). Euclidean signature, D = 3.

dx2 =dr2 + r2 dΩ2

x · dx= r dr

ds2 = |K |−1

(

dr2 +
k r2 dr2

1− k r2
+ r2dΩ2

)

= |K |−1

(

dr2

1− k r2
+ r2 dΩ2

)

ds2 =− dt2 + a2(t)

(

dr2

1− k r2
+ r2 dΩ2

)
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If the universe is a sphere a would be the radius. Otherwise, it is just a scale factor.

ds2 =− dt2 + a2(t) g̃ij dxi dxj

Any function in front of t could always be absorbed into a2(t) by a coordinate transformation,
so this will be enough for our ansatz. t is the proper time for an observer at rest.

Sometimes: ds2 = a2(τ )
[

− dτ2 + g̃ij dxi dxj
]

. τ is not proper time. τ is “conformal time”.

Affine connection:

Γ00
0 =0, Γ0i

0 = 0, Γ00
i = 0

Constant xi is a geodesic.

Γij
0 = a ȧ g̃ij , Γ0 j

i =
ȧ

a
δi

j , Γjk
i = Γ̃jk

i

Ricci [“You should do this yourself”]. Now for three spatial dimensions:

R00 = 3
ä

a
, Rij =− (a ä + 2 ȧ2 +2 k)g̃ij

Use

Rµν −
1

2
gµν R =− 8 πGTµν

or equivalently

Rµν =− 8π G

(

Tµν −
1

2
gµν T λ

λ

)

Tµν = ?

T00 = ρ = energy density. T0i = 0. We expect this to be zero. There is no natural vector where it
could point. We have a symmetry in the metric. Tij = p gij = p a2 g̃ij. For the moment, p is just
a letter. But we call it pressure. (We have to do it this way, because we did not go through the
hydrodynamics.) Thus, the ansatz we want to use:











T00 = ρ, T0i = 0

Tij = p gij = p a2g̃ij

T µ
µ =− ρ + 3 p

• “Dust” (i.e. “cold” matter, matter at low velocities):

Tµν ∝Pµ Pν

where Pµ is the momentum of the particles. If they are at rest, we have

Tµν=̇









ρ 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0









for dust

p = 0 for dust.

• Radiation: Electromagnetism has Tλ
λ = 0. This means something, but I am not going to talk

about it. This gives us p =
1

3
ρ. When we look at energy conservation, this has a very natural

interpretation.
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Generic situation for dust, radiation and maybe some other types of energy too, we have p = w ρ

for some constant w.

rhs∝Tµν −
1

2
gµν Tλ

λ

3
ä

a
=− 4πG (ρ + 3p): acceleration equation

aä +2ȧ2 + 2k = 4πG a2(ρ− p)

Insert the acceleration equation into the later equation

ȧ2 + k =
8πG

3
a2 ρ: the Friedmann equation

Energy conservation we get from the zeroth component of DµT µν = 0. (It gives us no extra
information, it is built into the Einstein equations. But it may give us a simpler equation to
replace the acceleration or the Friedmann equation.) The i-components are empty: check!

0 = gνλDνTλ0 = g00D0T00 + gijDiTj0 =

Beware: Tj0 = 0 does not imply that DiTj0 = 0. Tj0 is just one corner of a tensor, and the affine
connection in Di may mix different parts of the tensor.

= g00
(

∂0T00 − 2Γ00
0 T00 − 2Γ00

i T0i

)

+ gij
(

∂iTj0−Γij
0 T00 −Γij

k Tk0−Γi0
0 Tj0−Γi0

k Tjk

)

=

=− ρ̇ − 3
ȧ

a
(ρ + p)

0= ρ̇ a3 + 3 a2 ȧρ�
=

d

dt
(ρa3)

+ 3 a2ȧp

d
(

ρa3
)

=− 3 p a2 da

d

(

4πa3

3
ρ

)

=− 4πa2 p da

Volume times ρ equals energy. Area times p equals force.

Use conservation of energy together with Friedmann.

d

da

(

ρ a3
)

=− 3 p a2 =− 3wρ a2

ρ(a)∝ aα

d

da
aα+3 =− 3 waα+2

α + 3=− 3w

α =− 3(w +1)

Dust: w = 0. ρ = ρ0 a−3. Very reasonable. The density goes down as the volume goes up.

Radiation: w =
1

3
. ρ = a−4. The wavelength grows as the universe expands. Physical!
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