Isometry: a coordinate transformation $x^{\prime \mu}=x^{\mu}+\xi^{\mu}(x)$, which we think of as infinitesimal. The term isometry applies to any transformation that leaves the metric of the same form. The metric is form invariant under such a transformation. We will, however, only consider continuous symmetries.

A vector $\xi^{\mu}(x)$ with these properties is called a Killing vector, and it satisfies $\mathrm{D}_{(\mu} \xi_{\nu)}=0$. This is very restrictive. We will see that soon.

Example: Flat, two-dimensional space. $\mathrm{d} s^{2}=\mathrm{d} x^{2}+\mathrm{d} y^{2}$. How do we find the Killing vectors?

$$
\left\{\begin{array}{l}
x^{\prime}=x+f(x, y) \\
y^{\prime}=y+g(x, y)
\end{array}\right.
$$

f is ξ^{x} and g is ξ^{y}. We assume that f and g are small, so that we only need to consider them to first order. In these coordinates the affine connection vanishes, so

$$
\mathrm{D}_{(\mu} \xi_{\nu)}=0 \Rightarrow\left\{\begin{array}{l}
\partial_{x} \xi_{x}=0 \\
\partial_{y} \xi_{y}=0 \\
\partial_{x} \xi_{y}+\partial_{y} \xi_{x}=0
\end{array}\right.
$$

Three equations for two unknown functions: very restrictive. Looks even over-determined. In general, in D dimensions, we get $D(D+1) / 2$ equations for D components of the D-dimensional vector. Let us use f and g :

$$
\begin{cases}\partial_{x} f=0 & \Rightarrow f=f(y), \text { a function of } y \text { only. } \\ \partial_{y} g=0 & \Rightarrow g=g(x) \\ \partial_{x} g+\partial_{y} f=0 & \Rightarrow g^{\prime}(x)+f^{\prime}(y)=0\end{cases}
$$

$g^{\prime}(x)$ depends only on $x, f^{\prime}(y)$ depends only on y, thus, given the last equation, they must both be constant. $g^{\prime}(x)=-a, f^{\prime}(y)=a$.

$$
\left\{\begin{array}{l}
f=b+a y \\
g=c-a x
\end{array}, \quad\binom{x^{\prime}}{y^{\prime}}=\binom{x}{y}+a\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{x}{y}\right.
$$

b represents moving the coordinate system in the x direction. c represents translation in the y direction. a represents rotation around the origin. We have three linearly independent solutions (three parameters). $3=D(D+1) / 2$. The maximal number of isometries in any dimension is $D(D+1) / 2$. This may be a simple example, but it illustrates the procedure. With a more complicated metric, this is not trivial.

EXAMPLE: $\mathrm{d} s^{2}=\mathrm{d} r^{2}+r^{2} \mathrm{~d} \varphi^{2} \xlongequal{!} \mathrm{d} r^{\prime 2}+{r^{\prime}}^{2} \mathrm{~d} \varphi^{\prime 2}$, with

$$
\begin{gathered}
\left\{\begin{array}{c}
r^{\prime}=r+f(r, \varphi) \\
\varphi^{\prime}=\varphi+g(r, \varphi)
\end{array}\right. \\
\left\{\begin{array}{l}
\mathrm{d} r^{\prime}=\mathrm{d} r+\partial_{r} f \mathrm{~d} r+\partial_{\varphi} f \mathrm{~d} \varphi \\
\mathrm{~d} \varphi^{\prime}=\mathrm{d} \varphi+\partial_{r} g \mathrm{~d} r+\partial_{\varphi} g \mathrm{~d} \varphi
\end{array}\right.
\end{gathered}
$$

Expand to linear order in the functions f and g :

$$
\mathrm{d} s^{2}=\mathrm{d} r^{2}+2 \mathrm{~d} r\left(\partial_{r} f \mathrm{~d} r+\partial_{\varphi} f \mathrm{~d} \varphi\right)+r^{2} \mathrm{~d} \varphi^{2}+2 r f \mathrm{~d} \varphi^{2}+r^{2 \prime} \cdot 2 \mathrm{~d} \varphi\left(\partial_{r} g \mathrm{~d} r+\partial_{\varphi} g \mathrm{~d} \varphi\right)
$$

We get one equation each for the coefficients of $\mathrm{d} r^{2}, \mathrm{~d} \varphi^{2}$ and $\mathrm{d} r \mathrm{~d} \varphi$. If we want to compare to the other version, $\mathrm{D}_{(\mu} \xi_{\nu)}=0$, we have have to keep in mind that the functions here are ξ^{μ} not ξ_{μ}. We leave completing the calculation as an exercise.
$\xi_{\mu}, \quad \mathrm{D}_{\mu} \xi_{\nu}$. By the Killing equation, this is antisymmetric. $\mathrm{D}_{\mu} \xi_{\nu}=\mathrm{D}_{[\mu} \xi_{\nu]} . \mathrm{D}_{\mu} \mathrm{D}_{\nu} \xi_{\lambda}$ will be determined in terms of $\xi_{\mu}, \mathrm{D}_{\mu} \xi_{\nu}$, as will any higher derivatives of a Killing vector.

For any vector we can write $0=\mathrm{D}_{[\mu} \mathrm{D}_{\nu} \xi_{\lambda]}$. Anti-symmetric in the first means we get curvature

$$
\begin{gathered}
\mathrm{D}_{[\mu} \mathrm{D}_{\nu} \xi_{\lambda]} \propto R_{[\mu \nu \lambda]}^{\sigma} \xi_{\sigma}, \quad \text { but } R_{[\mu \nu \lambda]}^{\sigma}=0 \\
0=6 \mathrm{D}_{[\mu} \mathrm{D}_{\nu} \xi_{\lambda]}=\mathrm{D}_{\mu} \mathrm{D}_{\nu} \xi_{\lambda}+\mathrm{D}_{\nu} \mathrm{D}_{\lambda} \xi_{\mu}+\mathrm{D}_{\lambda} \mathrm{D}_{\mu} \xi_{\nu}-\mathrm{D}_{\mu} \mathrm{D}_{\lambda} \xi_{\nu}-\mathrm{D}_{\nu} \mathrm{D}_{\mu} \xi_{\lambda}-\mathrm{D}_{\lambda} \mathrm{D}_{\nu} \xi_{\mu}=
\end{gathered}
$$

Now, we use the Killing equation: $-\mathrm{D}_{\lambda} \xi_{\nu}=+\mathrm{D}_{\nu} \xi_{\lambda}$.

$$
\begin{gathered}
=2(\mathrm{D}_{\mu} \mathrm{D}_{\nu} \xi_{\lambda}+\underbrace{\left.\mathrm{D}_{\nu} \mathrm{D}_{\lambda} \xi_{\mu}-\mathrm{D}_{\lambda} \mathrm{D}_{\nu} \xi_{\mu}\right)}_{=R_{\nu \lambda \mu}{ }^{\sigma} \xi_{\sigma}} \\
\Rightarrow \mathrm{D}_{\mu} \mathrm{D}_{\nu} \xi_{\lambda}=-R_{\nu \lambda \mu}{ }^{\sigma} \xi_{\sigma}
\end{gathered}
$$

ξ_{μ} and $\mathrm{D}_{\mu} \xi_{\nu}$ in one point determines $\xi_{\mu}(x)$. If it exists.
In some point $\xi_{\mu}\left(x_{0}\right)$ and $\mathrm{D}_{[\mu} \xi_{\nu]}\left(x_{0}\right)$. That is all information I am allowed to put in. These are not functions, these are just numbers. Taken in one single point. $\xi_{\mu}\left(x_{0}\right)$ is D numbers. $\mathrm{D}_{[\mu} \xi_{\nu]}\left(x_{0}\right)$ is $D(D-1) / 2$ numbers. In total: $D(D+1) / 2$.

Figure 1. $\xi^{\mu}\left(x_{0}\right)$ interpreted as a translation. This is drawn in a coordinate system where the affine connection vanishes at $x_{0}, \Gamma_{\nu \lambda}^{\mu}\left(x_{0}\right)=0$. In such a coordinate system $\xi^{\mu}(x) \approx a^{\mu}+\lambda^{\mu}{ }_{\nu}\left(x-x_{0}\right)^{\nu}+\cdots$, where $\lambda^{\mu}{ }_{\nu}$ is antisymmetric. The rotation angle is parametrised by $\mathrm{D}_{[\mu} \xi_{\nu]}$.

The universe: Before we try to solve Einstein's equations, we would like to have a good ansatz. From a lot of observations, it looks like the universe is

- Homogeneous - "looks essentially the same from every point in space". Translation: look at things from a different point.
- Isotropic - "looks the same in all directions". This is symmetry under rotations.

The spatial metric of the universe, at a given time t, is maximally symmetric. $D(D+1) / 2=6$ Killing vectors.

$$
\begin{gathered}
\mathrm{D}_{\mu} \mathrm{D}_{\nu} \xi_{\lambda}=-R_{\nu \lambda \mu}{ }^{\sigma} \xi_{\sigma} \\
\Rightarrow \quad \mathrm{D}_{[\rho} \mathrm{D}_{\mu]} \mathrm{D}_{\nu} \xi_{\lambda}=-\mathrm{D}_{[\rho} R_{\mu]}{ }^{\sigma}{ }_{\nu \lambda} \xi_{\sigma}-R_{\nu \lambda[\mu}{ }^{\sigma} \mathrm{D}_{\rho]} \xi_{\sigma} \\
\mathrm{D}_{[\rho} \mathrm{D}_{\mu]} \mathrm{D}_{\nu} \xi_{\lambda}=\frac{1}{2} R_{\rho \mu \nu}{ }^{\sigma} \mathrm{D}_{\sigma} \xi_{\lambda}+\frac{1}{2} R_{\rho \mu \lambda}{ }^{\sigma} \mathrm{D}_{\nu} \sigma_{\sigma}
\end{gathered}
$$

We will want to use $\mathrm{D}_{[\mu} R_{\nu \lambda] \rho}{ }^{\sigma} \equiv 0$. We want to get rid of $\mathrm{D}_{[\rho} R_{\mu]}{ }^{\sigma}{ }_{\nu \lambda} \xi_{\sigma}$, so that we only have things containing $\mathrm{D}_{\mu} \xi_{\nu}$. $\mathrm{D}_{[\mu} \xi_{\nu]}$ If it is maximally symmetric, this can be chosen, for some Killing vector, to be any antisymmetric matrix at any given point. \Rightarrow Expression with $R_{\ldots}=0$.
What we end up with (Weinberg does it in full) is the following:

$$
0=R_{\rho \mu[\nu}^{[\sigma} \delta_{\lambda]}^{\tau]}+R_{\nu \lambda[\rho}^{[\sigma} \delta_{\mu]}^{\tau]}
$$

(I cannot draw this conclusion for any space that is less than maximally symmetric.) Contract this with $4 \delta_{\tau}^{\lambda}$:

$$
0=D R_{\rho \mu \nu}^{\sigma}-R_{\rho \mu \nu}{ }^{\sigma}-R_{\rho \mu \nu}^{\sigma}-2 R_{\nu[\mu \rho]}^{\sigma}-2 R_{\nu[\rho} \delta_{\mu]}^{\sigma}
$$

where we have used $R_{[\mu \nu \lambda]}{ }^{\sigma}=0$ to grey out two terms.

$$
(D-1) R_{\rho \mu \nu \sigma}=2 R_{\nu[\rho} g_{\mu] \sigma}
$$

We can express Riemann in terms of Ricci.

$$
\times g^{\nu \rho} \Rightarrow
$$

$$
\begin{gathered}
(D-1) R_{\mu \sigma}=R g_{\mu \sigma}-R_{\mu \sigma} \Rightarrow D R_{\mu \sigma}=R g_{\mu \sigma} \\
R_{\mu \nu}=\frac{1}{D} g_{\mu \nu} R \\
R_{\mu \nu \rho \sigma}=\frac{1}{D(D-1)}\left(g_{\mu \rho} g_{\nu \sigma}-g_{\mu \sigma} g_{\nu \rho}\right) R
\end{gathered}
$$

Remember:

$$
\mathrm{D}_{\nu}\left(R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R\right)=\left(\frac{1}{D}-\frac{1}{2}\right) g^{\mu \nu} \mathrm{D}_{\nu} R=0
$$

Unless $D=2$, we have $\mathrm{D}_{\nu} R=\partial_{\nu} R=0 . R=$ const $=-K$. (The minus sign: Using Weinberg's conventions, a space with positive curvature, such as a sphere, has a negative curvature scalar R.)
Given D, K and signature, a maximally symmetric space is unique. We won't prove this. The essential information of K is the sign, $+, 0,-$.

Figure 2. Maximally symmetric surfaces embedded in a) Euclidean 3D space, b) Minkowski space.

Strategy: embed D-dimensional space (-time) in a flat space (-time) of dimension $D+1$.

