20081201 Lecturer: Martin Cederwall

Isometry: a coordinate transformation z'" = z# + £#(z), which we think of as infinitesimal.
The term isometry applies to any transformation that leaves the metric of the same form. The
metric is form invariant under such a transformation. We will, however, only consider con-
tinuous symmetries.

A vector #(x) with these properties is called a Killing vector, and it satisfies D(,&,) = 0. This is
very restrictive. We will see that soon.

ExXAMPLE: Flat, two-dimensional space. ds?=dz?+ dy?. How do we find the Killing vectors?

{ $/:$+f($ay)
y'=y+g(z,y)

fis £F and g is €Y. We assume that f and g are small, so that we only need to consider them to
first order. In these coordinates the affine connection vanishes, so

azfz:()
Duény=0 = 0y&y=0
az£y+ay§m:0

Three equations for two unknown functions: very restrictive. Looks even over-determined. In
general, in D dimensions, we get D (D + 1)/2 equations for D components of the D-dimensional
vector. Let us use f and g:

0, f=0 = f=f(y), a function of y only.
0yg=0 = g=g(z)
og+0yf=0 = g'(x)+ f'(y)=0

g'(x) depends only on z, f’(y) depends only on y, thus, given the last equation, they must both

be constant. ¢'(z)=—a, f'(y)=a.
(3 ) (o) ()

f=b+ay x’
g=c—azx’ y’

b represents moving the coordinate system in the x direction. ¢ represents translation in the y
direction. a represents rotation around the origin. We have three linearly independent solutions
(three parameters). 3 = D (D + 1)/2. The maximal number of isometries in any dimension is
D (D +1)/2. This may be a simple example, but it illustrates the procedure. With a more com-
plicated metric, this is not trivial.

1
EXAMPLE: ds?=dr?2+r2dg? =—dr’* + 1'% d¢’?, with

{7‘/:7‘+f(7",(p)
o'=p+g(r,0)

dr'=dr+0,fdr+0, f de
dp'=dp+0rgdr+0,gde

Expand to linear order in the functions f and g:

ds?=dr?+2dr (0,f dr+ 0, fdp) +r2de*+ 27 fdp? + 1% -2dp (g dr + Dpg dp)



We get one equation each for the coefficients of dr?, d¢? and drdep. If we want to compare to
the other version, D(,§,) = 0, we have have to keep in mind that the functions here are £* not
&, We leave completing the calculation as an exercise. N

&u, Du&y. By the Killing equation, this is antisymmetric. D,§, = D,§,). DD, &\ will be
determined in terms of £,,D ., as will any higher derivatives of a Killing vector.

For any vector we can write 0 =D, D, £)}. Anti-symmetric in the first means we get curvature
D Duényx Riuwn” &0y but Rpuun® =0
0=6D, D, {3 =D, D, +D,DEu+DaDL & —DuDAE — DD — DD E, =
Now, we use the Killing equation: —Dy&, =+ D,&,.

=2 (DHD,,f)‘—FDVD)\fu—D)‘DVfN)

~
=Ru>\ua'§a

= Du DV€>\ = RVAMU fa

¢, and D¢, in one point determines £, (z). If it exists.

In some point &, (z0) and Dy,&,)(wo). That is all information I am allowed to put in. These are
not functions, these are just numbers. Taken in one single point. &,(x¢) is D numbers.
Dié(20) is D (D —1)/2 numbers. In total: D (D +1)/2.

Figure 1. £H(zo) interpreted as a translation. This is drawn in a coordinate system where the affine
connection vanishes at zo, [')y(z9) = 0. In such a coordinate system &#(z) &~ a* + Ay, (z — z0)” + -,
where A#, is antisymmetric. The rotation angle is parametrised by D[,&, .



The universe: Before we try to solve Einstein’s equations, we would like to have a good ansatz.
From a lot of observations, it looks like the universe is

e Homogeneous — “looks essentially the same from every point in space”. Translation: look
at things from a different point.

e Isotropic — “looks the same in all directions”. This is symmetry under rotations.

The spatial metric of the universe, at a given time ¢, is maximally symmetric. D (D +1)/2=6
Killing vectors.

D,LLDl/g)\ = Ru/\,ug ga

= DpDuDuéx=—=DRu% wa & — Rur” Dpiés
1 o 1 o
D[pD,u]Dvg/\zng,uv DU§A+§R;);L)\ DUJG

We will want to use Dy, Ry, = 0. We want to get rid of D[,R,)° ,x» &, so that we only have
things containing D ,&,. D(,&, If it is maximally symmetric, this can be chosen, for some Killing
vector, to be any antisymmetric matrix at any given point. = Expression with R =0.

What we end up with (Weinberg does it in full) is the following:

0= Ryl 83 + Ruapl” 0]

(I cannot draw this conclusion for any space that is less than maximally symmetric.) Contract
this with 46:

0=DR,..° —Rpuw? —2R,[,0p
where we have used R[,,,5)” =0 to grey out two terms.
(D =1) Rppvo =2 Ryjp9)o

We can express Riemann in terms of Ricci.

X gl =
(D-DRuyo=Rgue —Ruoe = DR,c=Rgu
1
RHV:BQMVR
1
Ryvpo = m (Gup9vo = Guo Gup) R
Remember:

D”<RW ‘%g”uR) - %‘%)gWDVR:o

Unless D =2, we have D,R=0,R=0. R=const =— K. (The minus sign: Using Weinberg’s con-
ventions, a space with positive curvature, such as a sphere, has a negative curvature scalar R.)

Given D, K and signature, a maximally symmetric space is unique. We won’t prove this. The
essential information of K is the sign, +,0,—.



Figure 2. Maximally symmetric surfaces embedded in a) Euclidean 3D space, b) Minkowski space.

Strategy: embed D-dimensional space (-time) in a flat space (-time) of dimension D + 1.



