The topic of today is again the Schwarzschild solution, and treat a bit more advanced topics.
6.1 Calculate the deflection of a ray of light grazing the surface of the sun.

Figure 1.

$$
\begin{gathered}
\mathrm{d} \tau^{2}=B(r) \mathrm{d} t^{2}-A(r) \mathrm{d} r^{2}-r^{2} \mathrm{~d} \Omega \\
B(r)=\frac{1}{A(r)}=\left(1-\frac{2 M G}{r}\right)
\end{gathered}
$$

Equations for photon, in the $\theta=\frac{\pi}{2}$ plane:

$$
\begin{gather*}
r^{2} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=J B(r) \tag{1}\\
0=\frac{1}{B(r)}-\frac{A(r)}{B(r)^{2}}\left(\frac{\mathrm{~d} r}{\mathrm{~d} t}\right)^{2}-\frac{J^{2}}{r^{2}} \tag{2}
\end{gather*}
$$

The deflection $\Delta \varphi$ is

$$
\Delta \varphi=2 \int_{r_{0}}^{\infty} \frac{\mathrm{d} \varphi}{\mathrm{~d} r} \mathrm{~d} r-\pi
$$

The factor of 2 here is a symmetry factor. $\Delta \varphi=\Delta \tilde{\varphi}-\pi$, where $\Delta \tilde{\varphi}$ is the total change in angle. $\Delta \tilde{\varphi}=\pi$ if there is no deflection, $\Delta \varphi=0$ if there is no deflection.

Use the product rule

$$
\frac{\mathrm{d} r}{\mathrm{~d} t}=\frac{\mathrm{d} r}{\mathrm{~d} \varphi} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}
$$

in (1) and (2)

$$
\begin{gathered}
\Rightarrow 0=B(r)^{-1}-A(r) B(r)^{-2} \frac{J^{2} B(r)^{2}}{r^{4}}\left(\frac{\mathrm{~d} r}{\mathrm{~d} \varphi}\right)^{2}-\frac{J^{2}}{r^{2}} \\
\Rightarrow 0=\frac{r^{4}}{A(r) B(r) J^{2}}-\left(\frac{\mathrm{d} r}{\mathrm{~d} \varphi}\right)^{2}-\frac{r^{2}}{A(r)} \\
\Rightarrow\left(\frac{\mathrm{d} r}{\mathrm{~d} \varphi}\right)^{2}=\frac{r^{2}}{A(r)}\left(\frac{r^{2}}{B(r) J^{2}}-1\right) \\
\Rightarrow\left(\frac{\mathrm{d} \varphi}{\mathrm{~d} r}\right)= \pm \frac{1}{r} \frac{\sqrt{A(r)}}{\sqrt{\frac{r^{2}}{B(r) J^{2}-1}}}, \quad \begin{array}{l}
\quad+: \mathrm{d} r>0 \Rightarrow \mathrm{~d} r>0 \Rightarrow \mathrm{~d} \varphi>0 \text { after grazing } \\
-: \mathrm{d} \varphi<0 \text { before grazing }
\end{array}
\end{gathered}
$$

We are interested in the positive version. Determine J using $\mathrm{d} r / \mathrm{d} \varphi=0$ at $r=r_{0}$.

$$
\begin{aligned}
& \Rightarrow \frac{r_{0}^{2}}{B\left(r_{0}\right) J^{2}}-1=0 \quad \Rightarrow \quad J^{2}=\frac{r_{0}^{2}}{B\left(r_{0}\right)} \\
& \Rightarrow \Delta \tilde{\varphi}=2 \int_{r_{0}}^{\infty} \mathrm{d} r \frac{\sqrt{A(r)}}{r \sqrt{\frac{r^{2}}{r_{0}^{2}} \frac{B\left(r_{0}\right)}{B(r)}-1}}
\end{aligned}
$$

In general this can only be solved numerically. In the limit $r_{0} \gg 2 M G \quad(\Rightarrow r \gg 2 M G)$.

$$
\begin{gathered}
\sqrt{A(r)}=\frac{1}{\sqrt{1-\frac{2 M G}{r}}} \simeq 1+\frac{M G}{r} \\
\frac{r^{2}}{r_{0}^{2}} \frac{B\left(r_{0}\right)}{B(r)}-1=\frac{r^{2}}{r_{0}^{2}}\left(1-\frac{2 M G}{r_{0}}\right)\left(1+\frac{2 M G}{r}\right)-1 \simeq \frac{r^{2}}{r_{0}^{2}}\left(1-\frac{2 M G}{r_{0}}+\frac{2 M G}{r}\right)-1= \\
=\left(\frac{r^{2}}{r_{0}^{2}}-1\right)-\frac{2 M G r^{2}}{r_{0}}\left(\frac{1}{r_{0}}-\frac{1}{r}\right)=\ldots=\frac{1}{r_{0}^{2}}\left(r^{2}-r_{0}^{2}\right)\left(1-\frac{2 M G r}{r_{0}\left(r_{0}+r\right)}\right) \\
\Rightarrow \Delta \tilde{\varphi} \simeq 2 \int_{r_{0}}^{\infty} \mathrm{d} r \frac{1}{r}\left(1+\frac{M G}{r}\right) \frac{r_{0}}{\sqrt{r^{2}-r_{0}^{2}}}\left(1+\frac{M G r}{r_{0}\left(r+r_{0}\right)}\right) \simeq \\
\simeq 2 r_{0} \int_{r_{0}}^{\infty} \mathrm{d} r \frac{1}{r \sqrt{r^{2}-r_{0}^{2}}}\left(1+\frac{M G}{r}+\frac{M G r}{r_{0}\left(r+r_{0}\right)}\right)=\left[\begin{array}{c}
\text { table of } \\
\text { integrals }
\end{array}\right]= \\
\quad=2 r_{0}\left[\frac{1}{r_{0}} \arccos \left(\frac{r_{0}}{r}\right)+\frac{M G \sqrt{r^{2}-r_{0}^{2}}}{r r_{0}^{2}}+\frac{M G}{r_{0}^{2}} \frac{\sqrt{r-r_{0}}}{\sqrt{r+r_{0}}}\right]_{r_{0}}^{\infty} \\
=2 r_{0}\left(\frac{1}{r_{0}}\left(\frac{\pi}{2}-0\right)+\frac{M G}{r_{0}}(1-0)+\frac{M G}{r_{0}^{2}}(1-0)\right)=\pi+4 \frac{M G}{r_{0}^{2}} \\
\Delta \varphi=\Delta \tilde{\varphi}-\pi \simeq \frac{4 M G}{r_{0}}
\end{gathered}
$$

To get a numerical value we must reinsert c.

$$
\begin{gathered}
{[M]=\mathrm{kg}, \quad\left[r_{0}\right]=m, \quad[G]=\frac{\mathrm{kg} \mathrm{~m}}{\mathrm{~s}^{2}} \frac{\mathrm{~m}^{2}}{\mathrm{~kg}^{2}}=\frac{\mathrm{m}^{3}}{\mathrm{~kg} \mathrm{~s}^{2}}} \\
\Rightarrow\left[\frac{4 M G}{r_{0}}\right]=\frac{\mathrm{m}^{2}}{\mathrm{~s}^{2}} \Rightarrow \text { a factor of } c^{2} \\
\Rightarrow \Delta \varphi=\frac{4 M G}{r_{0} c^{2}}
\end{gathered}
$$

For the sun this gives $\Delta \varphi=1,75^{\prime \prime}=1,75^{\circ} / 3600$.

6.2

"Find the time for one revolution in the circular orbit at radius $r_{\mathrm{c}}=3 a=6 \mathrm{MG}$ as measured by
(a) a comoving observer
(b) an observer at rest at $r=r_{\mathrm{c}}$
(c) a distant $(r \rightarrow \infty)$ observer at rest."
a) Comoving observer. Recall 5.3: $r=r_{\mathrm{c}}=6 M G \Rightarrow j^{2}=12 M^{2} G^{2}$.

$$
\theta=\frac{\pi}{2}, \quad \dot{\theta}=0, \quad \dot{r}=0, \quad \dot{\varphi}=\frac{j^{2}}{r_{\mathrm{c}}^{2}}=\frac{\sqrt{12} M G}{36 M^{2} G^{2}}=\frac{1}{6 \sqrt{3} M G}
$$

Lagrangian (massive particle):

$$
\begin{gathered}
L=1=\left(1-\frac{2 M G}{r_{\mathrm{c}}}\right) \dot{t}^{2}-(. . \nmid) \dot{r}^{2}-r_{\neq \nmid}^{2} \not \dot{\theta}^{2}-r_{\mathrm{c}}^{2} \underbrace{\sin ^{2} \theta}_{=1} \dot{\varphi}^{2}= \\
=\left(1-\frac{2 M G}{6 M G}\right) \dot{t}^{2}-36 M^{2} G^{2} \cdot \frac{1}{3 \cdot 36 M^{2} G^{2}}=\frac{2}{3} \dot{t}^{2}-\frac{1}{3} \\
\Rightarrow \dot{t}^{2}=2 \quad \Rightarrow \quad t=\sqrt{2} \tau
\end{gathered}
$$

Proper time measured by the comoving observer: $\tau_{c}=t_{0} / \sqrt{2}$, where t_{0} is coordinate time. To get τ_{c} use

$$
\begin{gathered}
\dot{\varphi}=\frac{\mathrm{d} \varphi}{\mathrm{~d} \tau}=\frac{1}{6 \sqrt{3} M G} \\
\Rightarrow \quad \tau_{\mathrm{c}}=6 \sqrt{3} M G \int_{0}^{2 \pi} \mathrm{~d} \varphi=12 \sqrt{3} \pi M G
\end{gathered}
$$

b) Observer at rest at $r=r_{\mathrm{c}}$.

$$
\begin{gathered}
\theta=\frac{\pi}{2}, \quad \dot{\theta}=0, \quad \dot{r}=0, \quad \dot{\varphi}=0 \\
\Rightarrow L=1=\left(1-\frac{2 M G}{r_{\mathrm{c}}}\right) \dot{t}^{2} \Rightarrow 1=\frac{2}{3}\left(\frac{\mathrm{~d} t}{\mathrm{~d} \tau}\right)^{2}
\end{gathered}
$$

so the proper time measured by an observer at rest is

$$
\Rightarrow \tau_{\mathrm{r}}=\sqrt{\frac{2}{3}} t_{0}=\sqrt{\frac{2}{3}} 12 \sqrt{6} \pi M G=24 \pi M G>\tau_{\mathrm{c}}
$$

c) Observer at rest at $r \rightarrow \infty$.

$$
\begin{gathered}
\dot{\theta}=\dot{r}=\dot{\varphi}=0 \\
\Rightarrow L=1=\left(1-\frac{2 M G}{r}\right) \dot{t}^{2} \longrightarrow \dot{t}^{2} \text { as } r \rightarrow \infty \\
\left(\frac{\mathrm{~d} t}{\mathrm{~d} \tau}\right)^{2}=1
\end{gathered}
$$

The proper time measured by an observer at $r \rightarrow \infty$ is just the coordinate time:

$$
\Rightarrow \tau_{\infty}=t_{0}=12 \sqrt{6} \pi M G>\tau_{\mathrm{c}}
$$

Comparing all these proper times:

$$
\Rightarrow \quad \tau_{\mathrm{c}}<\tau_{\mathrm{r}}<\tau_{\infty}=t_{0}
$$

6.3

"Calculate the coordinate time needed for a particle to fall into a black hole and pass the event horizon. Compare with the proper time measured by a comoving observer."

Equations ($\theta=\pi / 2, \dot{\theta}=0, \dot{\varphi}=0$: radial motion)

$$
\begin{gathered}
\left\{\begin{array}{l}
E=\frac{1}{B(r)}-\frac{A(r)}{B(r)^{2}}\left(\frac{\mathrm{~d} r}{\mathrm{~d} t}\right)^{2}-\frac{J \not f^{2}}{r^{2}} \\
\mathrm{~d} \tau^{2}=E B(r)^{2} \mathrm{~d} t^{2}
\end{array}\right. \\
\left(\frac{\mathrm{d} r}{\mathrm{~d} t}\right)^{2}=\frac{B(r)^{2}}{A(r) B(r)}-E \frac{B(r)}{A(r)}=B(r)^{2}(1-E B(r)) \\
\frac{\mathrm{d} r}{\mathrm{~d} t}=-B(r) \sqrt{1-E B(r)}
\end{gathered}
$$

Negative, since we are falling into the black hole.
Now consider particles close to the event horizon.

$$
r=r_{\mathrm{S}}+x=2 M G+x
$$

$x \ll 2 M G . x=0$ at the event horizon.

$$
\begin{gathered}
\Rightarrow B(r)=\left(1-\frac{2 M G}{r}\right)=1-\frac{2 M G}{2 M G+x} \simeq \frac{x}{2 M G} \\
\Rightarrow \frac{\mathrm{~d} r}{\mathrm{~d} t}=-\frac{x}{2 M G} \sqrt{1-\frac{E x}{2 M G}} \simeq-\frac{x}{2 M G}\left(1-\frac{E_{x}}{2 M G}\right) \simeq-\frac{x}{2 M G}=\frac{\mathrm{d} x}{\mathrm{~d} t} \\
\dot{x}+\frac{x}{2 M G}=0 \\
x(t)=R_{0} \mathrm{e}^{-t / 2 M G}
\end{gathered}
$$

It will take an infinite amount of coordinate time for the particle to reach the event horizon. An observer at infinity will never see the particle enter the black hole. (It will just fade away.)

The comoving observer:

$$
\begin{gathered}
\mathrm{d} \tau^{2}=E B(r)^{2} \mathrm{~d} t^{2} \\
\tau=\sqrt{E} \int_{t_{0}}^{t_{1}} B(r) \mathrm{d} t=\sqrt{E} \int_{r_{0}}^{r_{1}} B(r) \frac{\mathrm{d} t}{\mathrm{~d} r} \mathrm{~d} r=\left[\frac{\mathrm{d} t}{\mathrm{~d} r}=-\frac{1}{B(r) \sqrt{1-E B(r)}}\right]= \\
=-\sqrt{E} \int_{R_{0}}^{2 M G} \frac{\mathrm{~d} r}{\sqrt{1-B(r) E}}=-\sqrt{E} \int_{R_{0}}^{2 M G} \frac{\mathrm{~d} r}{\sqrt{1-E\left(1-\frac{2 M G}{r}\right)}}
\end{gathered}
$$

This is a finite number. In the interval $\left[R_{0}, 2 M G\right] r$ is close to $r_{\mathrm{S}}=2 M G \Rightarrow R_{0}-2 M G \ll 1$.

$$
\tau \simeq-\sqrt{E} \int_{R_{0}}^{2 M G} \mathrm{~d} r=\sqrt{E}\left(R_{0}-2 M G\right)<\infty
$$

This means that the particle reaches (and passes) the event horizon in finite proper time.

