2008-11-20

5.1

"Find the equations of motion for a massive particle in Schwarzschild geometry."
The standard form of the metric for a static and isotropic gravitational field:

$$
\mathrm{d} \tau^{2}=-g_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}=B(r) \mathrm{d} t^{2}-A(r) \mathrm{d} r^{2}-r^{2} \mathrm{~d} \Omega^{2}
$$

All the coefficients are functions of r, with no time dependence. In the case of a central mass M we solve Einstein's equations in empty space: $R_{\mu \nu}=0$, and we get

$$
B(r)=\frac{1}{A(r)}=1-\frac{2 G M}{r}
$$

The geometry is spherically symmetric. \Rightarrow We only need to consider motion in the $\theta=\frac{\pi}{2}$ plane.

$$
\mathrm{d} \tau^{2}=B(r) \mathrm{d} t^{2}-A(r) \mathrm{d} r^{2}-r^{2} \mathrm{~d} \varphi^{2}
$$

Since the particle is massive we use τ to parametrise the trajectory. The Lagrangian is, with dot denoting derivative with respect to τ,

$$
L=-g_{\mu \nu} \dot{x}^{\mu} \dot{x}^{\nu}=B(r) \dot{t}^{2}-A(r) \dot{r}^{2}-r^{2} \dot{\varphi}^{2}=1
$$

Euler-Lagrange equations for t :

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\frac{\partial L}{\partial t}\right)=0 \Rightarrow\left\{\begin{array}{l}
B(r) \dot{t}=\frac{1}{\sqrt{E}}, \text { for some constant } E \\
\mathrm{~d} \tau=\sqrt{E} B(r) \mathrm{d} t
\end{array}\right.
$$

The choice of integration constant may seem peculiar at this time, but it will be expedient.
Euler-Lagrange equations for φ :

$$
\begin{gathered}
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\frac{\partial L}{\partial \varphi}\right)=0 \quad \Rightarrow \quad r^{2} \dot{\varphi}=C_{1} \\
\dot{\varphi}=\frac{\mathrm{d} \varphi}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} \tau}=\frac{\mathrm{d} \varphi}{\mathrm{~d} t} \frac{1}{\sqrt{E} B(r)}=\frac{C_{1}}{r_{2}} \\
\frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=\frac{C_{1} \sqrt{E} B(r)}{r^{2}}=\left[J=C_{1} \sqrt{E}\right]=\frac{J B(r)}{r^{2}} \\
r^{2} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=J B(r)
\end{gathered}
$$

Use $L=1$:

$$
\begin{gathered}
1=B(r) \dot{t}^{2}-A(r) \dot{r}^{2}-r^{2} \dot{\varphi}^{2}=B(r) \frac{1}{E B(r)^{2}}-A(r)\left(\frac{\mathrm{d} r}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} \tau}\right)^{2}-r^{2} \frac{C_{1}^{2}}{r^{4}}= \\
=\frac{1}{E B(r)}-A(r)\left(\frac{\mathrm{d} r}{\mathrm{~d} t}\right)^{2} \frac{1}{E B(r)}-\frac{1}{r^{2}} \cdot \frac{J^{2}}{E} \\
\Rightarrow \quad E=\frac{1}{B(r)}-\frac{A(r)}{B(r)^{2}}\left(\frac{\mathrm{~d} r}{\mathrm{~d} t}\right)^{2}-\frac{J^{2}}{r^{2}}
\end{gathered}
$$

Massless particle: We cannot use τ as our parameter.

$$
L=\left(\frac{\mathrm{d} \tau}{\mathrm{~d} \lambda}\right)^{2}=0
$$

The equations are:

$$
\left\{\begin{array}{l}
r^{2} \frac{\mathrm{~d} \varphi}{\mathrm{~d} t}=J B(r) \\
0=\frac{1}{B(r)}-\frac{A(r)}{B(r)^{2}}\left(\frac{\mathrm{~d} r}{\mathrm{~d} t}\right)^{2}-\frac{J^{2}}{r^{2}}
\end{array}\right.
$$

5.2
"Using the Schwarzschild metric, find the proper length of the curves
(a) $r=\theta=$ const, $0 \leqslant \phi \leqslant 2 \pi$
(b) $\theta=\phi=$ const, $r_{1} \leqslant r \leqslant r_{2}$.

Comment on the result!"
Proper length in the Schwarzschild geometry $\left(\mathrm{d} s^{2}=-\mathrm{d} \tau^{2}\right)$

$$
s=\int \mathrm{d} s=\int_{\lambda_{1}}^{\lambda_{2}}\left(g_{\mu \nu} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \lambda} \frac{\mathrm{~d} x^{\nu}}{\mathrm{d} \lambda}\right)^{1 / 2} \mathrm{~d} \lambda
$$

where the path $x^{\mu}(\lambda)$ through spacetime has been parametrised by λ.
a) $r=r_{0}, \theta=\theta_{0}, 0 \leqslant \varphi<2 \pi$. Parametrise using $\lambda=\varphi$.

$$
\begin{gathered}
\dot{t}=\dot{r}=\dot{\theta}=0, \dot{\varphi}=1 \\
s=\int_{0}^{2 \pi} \mathrm{~d} \varphi \sqrt{g_{\varphi \varphi} \cdot 1 \cdot 1}=\int_{0}^{2 \pi} \mathrm{~d} \varphi \sqrt{\sin ^{2} \theta_{0} r_{0}^{2}}=2 \pi r_{0} \sin \theta_{0}
\end{gathered}
$$

This agrees with the result in the classical limit.
b) $\theta=\theta_{0}, \varphi=\varphi_{0}, r \leqslant r \leqslant r_{2}$.

Parametrise with $\lambda=r \Rightarrow \dot{t}=\dot{\theta}=\dot{\varphi}=0, \dot{r}=1$.

$$
\begin{gathered}
s=\int_{r_{1}}^{r_{2}} \mathrm{~d} r \sqrt{g_{r r} \cdot 1 \cdot 1}=\int_{r_{1}}^{r_{2}} \mathrm{~d} r \sqrt{A(r)}=\int_{r_{1}}^{r_{2}} \mathrm{~d} r \frac{1}{\sqrt{1-\frac{2 M G}{r}}}= \\
=\int_{r_{1}}^{r_{2}} \mathrm{~d} r \frac{\sqrt{r} \mathrm{~d} r}{\sqrt{r-2 M G}}=\left[\begin{array}{c}
\text { Table of } \\
\text { integrals }
\end{array}\right]=[\sqrt{r} \sqrt{r-2 M G}+2 M G \ln (\sqrt{r}+\sqrt{r-2 M G})]_{r_{1}}^{r_{2}}= \\
=r_{2} \sqrt{1-\frac{2 M G}{r_{2}}}-r_{1} \sqrt{1-\frac{2 M G}{r_{1}}}+2 M G \ln \left(\frac{\sqrt{r_{2}}\left(1+\sqrt{1-2 M G / r_{2}}\right)}{\sqrt{r_{1}}\left(1+\sqrt{1-2 M G / r_{1}}\right)}\right)
\end{gathered}
$$

The expression simplifies far from $r_{\mathrm{s}}=2 M G$, when $2 M G / r_{1} \ll 1$ and $2 M G / r_{2} \ll 1$. Then we can expand

$$
\begin{aligned}
& \sqrt{1-\frac{2 M G}{r}}=1-\frac{1}{2}\left(\frac{2 M G}{r}\right)+\cdots \\
\Rightarrow s= & \left(r_{2}-r_{1}\right)+2 M G \ln \left(\frac{-\sqrt{r_{2}}}{-\sqrt{r_{1}}}\right)+\mathcal{O}(M G) \\
= & \left(r_{2}-r_{1}\right)+M G \ln \left(\frac{r_{2}}{r_{1}}\right)+\mathcal{O}(M G)
\end{aligned}
$$

$r_{2}-r_{1}$ is the expected result in flat spacetime. $M G \ln \left(r_{2} / r_{1}\right)$ is the first order general relativistic correction.

5.3

"Consider a massive particle in a space-time described by the Schwarzschild metric. For a given value of $j \equiv r^{2} \dot{\phi}$, is it possible to be in a circular orbit? If so, what is the value of r for this orbit?"

$$
L=B(r) \dot{t}^{2}-A(r) \dot{r}^{2}-r^{2} \dot{\varphi}^{2}
$$

$\left(\theta=\pi / 2\right.$ by symmetry, $\left.{ }^{\cdot}=\frac{\mathrm{d}}{\mathrm{d} t}\right)$
Recall

$$
\begin{gather*}
\dot{t}=\frac{1}{\sqrt{E} B(r)} \tag{1}\\
r^{2} \dot{\varphi}=j \tag{2}\\
1=\frac{1}{E B(r)}-A(r) \dot{r}^{2}-\frac{j^{2}}{r^{2}} \tag{3}
\end{gather*}
$$

For what values of j is it possible to have circular orbits in this metric, and what are the r for those orbits? (3) \Rightarrow

$$
\begin{gathered}
\dot{r}^{2}=\frac{1}{E A(r) B(r)}
\end{gathered}-\frac{1}{A(r)}\left(1+\frac{j^{2}}{r^{2}}\right)=\frac{1}{E}-\left(1-\frac{2 M G}{r}\right)\left(1+\frac{j^{2}}{r^{2}}\right)=
$$

Differentiate with respect to τ :

$$
\frac{\mathrm{d}}{\mathrm{~d} \tau}\left(\dot{r}^{2}\right)=2 \dot{r} \ddot{r}=-\frac{\mathrm{d} r}{\mathrm{~d} \tau} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(-\frac{2 M G}{r}+\frac{j^{2}}{r^{2}}-\frac{2 M G j^{2}}{r^{3}}\right)=-\dot{r} \frac{\mathrm{~d}}{\mathrm{~d} r}(\ldots)
$$

We can cancel $\dot{r} \Rightarrow$ [A student remarks that it is a bit dodgy to cancel \dot{r} if we are looking for circular orbits, where $\dot{r}=0$. Fredrik thinks that is not a problem, but is unsure of why.]

$$
\ddot{r}=-\frac{\mathrm{d}}{\mathrm{~d} r} \underbrace{\left(-\frac{M G}{r}+\frac{j^{2}}{2 r^{2}}-\frac{M G j^{2}}{r^{3}}\right)}_{\equiv V \text { eff }}
$$

We can regard $V_{\text {eff }}$ as an effective potential.

$$
\ddot{r}=-\frac{\mathrm{d}}{\mathrm{~d} r} V_{\mathrm{eff}}(r)
$$

Circular orbits:

$$
\ddot{r}=0 \Rightarrow \frac{\mathrm{~d}}{\mathrm{~d} r} V_{\mathrm{eff}}=0
$$

If primes denote derivative with respect to r :

$$
V_{\mathrm{eff}}^{\prime}(r)=\frac{M G}{r^{2}}-\frac{j^{2}}{r^{3}}+\frac{3 M G j^{2}}{r^{4}}=0
$$

Since the Schwarzschild solution is only valid for $r>0$, we can multiply by r^{4} :

$$
\begin{gathered}
r^{2} M G-r j^{2}+3 M G j^{2}=0 \\
r^{2}-r \frac{j^{2}}{M G}+3 j^{2}=0 \\
r=\frac{j^{2}}{2 M G} \pm \sqrt{\left(\frac{j^{2}}{2 M G}\right)^{2}-3 j^{2}} \\
r_{ \pm}=\frac{j^{2}}{2 M G}\left(1 \pm \sqrt{1-12 \frac{M^{2} G^{2}}{j^{2}}}\right)
\end{gathered}
$$

What we really want to do is to find stable orbits, orbits where the orbiting body is not thrown out of the orbit by the slightest perturbation - since perturbations will always be present in a realistic situation. We are looking for a minimum of $V_{\text {eff }}$, not a maximum. Thus we require $V_{\text {eff }}^{\prime \prime}>0$.

$$
\begin{gathered}
r^{5} V_{\mathrm{eff}}^{\prime \prime}=-2 M G r^{2}+3 j^{2} r-12 M G j^{2}= \\
{\left[r^{2}=\frac{j^{2}}{M G} r-3 j^{2} \text { at } V_{\mathrm{eff}}^{\prime}=0\right]} \\
=-2 M G\left(\frac{j^{2}}{M G} r-3 j^{2}\right)+3 j^{2} r-12 M G j^{2}=j^{2}(r-6 M G)
\end{gathered}
$$

Finally, we study the orbits for the three cases.
i)

$$
\frac{12 M^{2} G^{2}}{j^{2}}>1 \Rightarrow \text { No circular orbits (imaginary roots } r_{ \pm} \text {) }
$$

ii)

$$
\frac{12 M^{2} G^{2}}{j^{2}}<1 \Rightarrow \text { One stable orbit }\left(r_{+}\right), \text {and one unstable orbit }\left(r_{-}\right)
$$

iii)

$$
\frac{12 M^{2} G^{2}}{j^{2}}=1 \quad \Rightarrow \quad r_{+}=r_{-}=r=\frac{j^{2}}{2 M G}=6 M G
$$

Only a single orbit is possible. $V_{\text {eff }}$ has a saddle point.
Classical limit: $2 M G \ll j$

$$
\begin{gathered}
r_{+}=\frac{j^{2}}{2 M G}(1+1)=\frac{j^{2}}{M G} \\
r_{-}=\frac{j^{2}}{2 M G}\left(1-\left(1-\frac{1}{2} \cdot 12 \frac{M^{2} G^{2}}{j^{2}}\right)\right)=3 M G
\end{gathered}
$$

Usually $r_{-}=3 M G=\frac{3}{2} r_{\mathrm{s}}$ is inside the massive object. The Schwarzschild solution only applies to free space, so if we really want to do this inside an object, we would have to consider $R_{\mu \nu}-$ $\frac{1}{2} g_{\mu \nu} R=-8 \pi G T_{\mu \nu}$.
In the classical limit there is one stable orbit at $r_{+}=j^{2} / M G$.

