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5.1

“Find the equations of motion for a massive particle in Schwarzschild geometry.”

The standard form of the metric for a static and isotropic gravitational field:

dτ2 =− gµν dxµ dxν = B(r)dt2−A(r) dr2− r2dΩ2

All the coefficients are functions of r, with no time dependence. In the case of a central mass M

we solve Einstein’s equations in empty space: Rµν = 0, and we get

B(r) =
1

A(r)
= 1− 2 GM

r

The geometry is spherically symmetric. ⇒We only need to consider motion in the θ =
π

2
plane.

dτ2 = B(r) dt2−A(r) dr2− r2dϕ2

Since the particle is massive we use τ to parametrise the trajectory. The Lagrangian is, with dot
denoting derivative with respect to τ ,

L =− gµνẋ
µẋν = B(r) ṫ2−A(r)ṙ2− r2ϕ̇2 = 1

Euler-Lagrange equations for t:

d

dτ

(

∂L

∂t

)

=0 ⇒







B(r) ṫ =
1

E
√ , for some constantE

dτ = E
√

B(r) dt

The choice of integration constant may seem peculiar at this time, but it will be expedient.

Euler-Lagrange equations for ϕ:

d

dτ

(

∂L

∂ϕ

)

= 0 ⇒ r2ϕ̇ = C1

ϕ̇ =
dϕ

dt

dt

dτ
=

dϕ

dt

1

E
√

B(r)
=

C1

r2

dϕ

dt
=

C1 E
√

B(r)

r2
=
[

J = C1 E
√ ]

=
J B(r)

r2

r2dϕ

dt
=J B(r)

Use L = 1:

1 =B(r) ṫ2−A(r) ṙ2− r2ϕ̇2 =B(r)
1

EB(r)2
−A(r)

(

dr

dt

dt

dτ

)2

− r2 C1
2

r4
=

=
1

E B(r)
−A(r)

(

dr

dt

)2
1

E B(r)
− 1

r2
· J2

E

⇒ E =
1

B(r)
− A(r)

B(r)2

(

dr

dt

)2

− J2

r2

1



Massless particle: We cannot use τ as our parameter.

L =

(

dτ

dλ

)2

= 0

The equations are:










r2dϕ

dt
=J B(r)

0=
1

B(r)
− A(r)

B(r)2

(

dr

dt

)2
− J2

r2

5.2

“Using the Schwarzschild metric, find the proper length of the curves

(a) r = θ = const, 0 6 φ 6 2π

(b) θ = φ = const, r1 6 r 6 r2.

Comment on the result!”

Proper length in the Schwarzschild geometry (ds2 =− dτ2)

s =

∫

ds =

∫

λ1

λ2

(

gµν
dxµ

dλ

dxν

dλ

)1/2

dλ

where the path xµ(λ) through spacetime has been parametrised by λ.

a) r = r0, θ = θ0, 06 ϕ < 2π. Parametrise using λ= ϕ.

ṫ = ṙ = θ̇ = 0, ϕ̇ =1

s =

∫

0

2π

dϕ gϕϕ · 1 · 1
√

=

∫

0

2π

dϕ sin2θ0 r0
2

√

=2π r0 sin θ0

This agrees with the result in the classical limit.

b) θ = θ0, ϕ= ϕ0, r 6 r 6 r2.

Parametrise with λ= r⇒ ṫ = θ̇ = ϕ̇ = 0, ṙ = 1.

s =

∫

r1

r2

dr grr · 1 · 1
√

=

∫

r1

r2

dr A(r)
√

=

∫

r1

r2

dr
1

1− 2 M G

r

√ =

=

∫

r1

r2

dr
r

√
dr

r − 2 MG
√ =

[

Table of
integrals

]

=
[

r
√

r − 2 M G
√

+ 2M G ln
(

r
√

+ r − 2 M G
√ )]

r1

r2

=

= r2 1− 2M G

r2

√

− r1 1− 2 M G

r1

√

+2 M G ln







r2
√ (

1 + 1− 2 MG/r2

√

)

r1
√ (

1 + 1− 2 MG/r1

√

)







The expression simplifies far from rs = 2 M G, when 2 M G/r1 ≪ 1 and 2 M G/r2 ≪ 1. Then we
can expand

1− 2 M G

r

√

=1− 1

2

(

2M G

r

)

+�
⇒ s =(r2− r1)+ 2M G ln

(− r2
√

− r1
√

)

+O(MG)

= (r2− r1)+ MG ln

(

r2

r1

)

+O(MG)
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r2− r1 is the expected result in flat spacetime. M G ln(r2/r1) is the first order general relativistic
correction.

5.3

“Consider a massive particle in a space-time described by the Schwarzschild

metric. For a given value of j ≡ r2φ̇, is it possible to be in a circular orbit? If so,
what is the value of r for this orbit?”

L =B(r) ṫ2−A(r) ṙ2− r2ϕ̇2

(θ = π/2 by symmetry, ˙ =
d

dt
)

Recall

ṫ =
1

E
√

B(r)
(1)

r2ϕ̇ = j (2)

1 =
1

EB(r)
−A(r) ṙ2− j2

r2
(3)

For what values of j is it possible to have circular orbits in this metric, and what are the r for
those orbits? (3)⇒

ṙ2 =
1

E A(r)B(r)
− 1

A(r)

(

1 +
j2

r2

)

=
1

E
−
(

1− 2M G

r

)(

1 +
j2

r2

)

=

=
1

E
−
(

1− 2 MG

r
+

j2

r2
− 2 M Gj2

r3

)

Differentiate with respect to τ :

d

dτ
(ṙ2) =2 ṙ r̈ =− dr

dτ

d

dr

(

− 2M G

r
+

j2

r2
− 2 MG j2

r3

)

=− ṙ
d

dr
(� )

We can cancel ṙ ⇒ [A student remarks that it is a bit dodgy to cancel ṙ if we are looking for
circular orbits, where ṙ = 0. Fredrik thinks that is not a problem, but is unsure of why.]

r̈ =− d

dr

(

− MG

r
+

j2

2 r2
− M Gj2

r3

)�
≡Ve ff

We can regard Veff as an effective potential.

r̈ =− d

dr
Veff(r)

Circular orbits:

r̈ = 0⇒ d

dr
Veff = 0

If primes denote derivative with respect to r:

Veff
′ (r)=

M G

r2
− j2

r3
+

3 MG j2

r4
= 0
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Since the Schwarzschild solution is only valid for r > 0, we can multiply by r4:

r2 MG− r j2 + 3M Gj2 =0

r2− r
j2

M G
+3 j2 = 0

r =
j2

2 M G
±

(

j2

2 M G

)2

− 3 j2

√

r±=
j2

2 M G

(

1± 1− 12
M2 G2

j2

√

)

What we really want to do is to find stable orbits, orbits where the orbiting body is not thrown
out of the orbit by the slightest perturbation — since perturbations will always be present in a
realistic situation. We are looking for a minimum of Veff, not a maximum. Thus we require
Veff

′′ > 0.

r5 Veff
′′ =− 2 MG r2 +3 j2 r − 12MG j2 =

[

r2 =
j2

M G
r − 3 j2 at Veff

′ = 0

]

=− 2M G

(

j2

M G
r − 3 j2

)

+ 3 j2 r − 12M Gj2 = j2(r − 6 M G)

Finally, we study the orbits for the three cases.

i)

12M2 G2

j2
> 1 ⇒ No circular orbits (imaginary roots r±)

ii)

12M2 G2

j2
< 1 ⇒ One stable orbit (r+), and one unstable orbit (r−)

iii)

12M2G2

j2
= 1 ⇒ r+ = r−= r =

j2

2 M G
= 6 MG

Only a single orbit is possible. Veff has a saddle point.

Classical limit: 2M G≪ j

r+ =
j2

2 M G
(1 +1)=

j2

M G

r−=
j2

2M G

(

1−
(

1− 1

2
· 12 M2G2

j2

))

=3 M G

Usually r− = 3 M G =
3

2
rs is inside the massive object. The Schwarzschild solution only applies

to free space, so if we really want to do this inside an object, we would have to consider Rµν −
1

2
gµνR =− 8π GTµν.

In the classical limit there is one stable orbit at r+ = j2/M G.
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