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5.1
“Find the equations of motion for a massive particle in Schwarzschild geometry.”
The standard form of the metric for a static and isotropic gravitational field:
dr?=— g, dz” dz¥ = B(r)dt? — A(r) dr? — r2dQ?

All the coefficients are functions of r, with no time dependence. In the case of a central mass M
we solve Einstein’s equations in empty space: R, =0, and we get
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The geometry is spherically symmetric. = We only need to consider motion in the 6§ = g plane.
dr?=B(r)dt?> — A(r) dr? — r2dp?

Since the particle is massive we use 7 to parametrise the trajectory. The Lagrangian is, with dot
denoting derivative with respect to 7,

L= guia’ = B(r) 2= A(r)i? —12p2=1
Euler-Lagrange equations for ¢:

d ( oL > 0 B(r)t= LE, for some constant F
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dr\ o dr=VvE B(r)dt

The choice of integration constant may seem peculiar at this time, but it will be expedient.

Euler-Lagrange equations for ¢:
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Use L=1:

1= B(r) i — A(r) 7% — 1242 = B(r) #&)Q _A(r) (%j—j) 1o




Massless particle: We cannot use 7 as our parameter.
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The equations are:

5.2

“Using the Schwarzschild metric, find the proper length of the curves
(a) r=0=const,0 < ¢ < 27
(b) 6= ¢ =const,r; <r < ro.

Comment on the result!”

Proper length in the Schwarzschild geometry (ds?= — dr?)
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where the path z#()\) through spacetime has been parametrised by A.

a) r=rp, 0 =00,0< ¢ <27. Parametrise using A= .

{t=r=0=0,p=1
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This agrees with the result in the classical limit.
b) 9:90,@:(,00,7“<7“<T2.
Parametrise with A\=r=1=0 = p=0,7=1.
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The expression simplifies far from ry =2 M G, when 2 M G/r1 < 1 and 2 M G/ro < 1. Then we
can expand
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ro — 11 is the expected result in flat spacetime. M G In(ry/r1) is the first order general relativistic
correction.

5.3

“Consider a massive particle in a space-time described by the Schwarzschild

metric. For a given value of j = r2gz5, is it possible to be in a circular orbit? If so,
what is the value of r for this orbit?”

L=B(r)t*— A(r)r2 —r?¢?

. d

(0=m/2 by symmetry, "= —)
Recall

For what values of j is it possible to have circular orbits in this metric, and what are the r for
those orbits? (3) =

2 -2
dr d(2MG+]22MGj )7; d

T = R &)
We can cancel 7 = [A student remarks that it is a bit dodgy to cancel r if we are looking for

circular orbits, where * =0. Fredrik thinks that is not a problem, but is unsure of why.]
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We can regard V.g as an effective potential.

Circular orbits:
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If primes denote derivative with respect to r:
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Since the Schwarzschild solution is only valid for 7 > 0, we can multiply by r*:

r’MG—rj2+3MGj%=0
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What we really want to do is to find stable orbits, orbits where the orbiting body is not thrown
out of the orbit by the slightest perturbation — since perturbations will always be present in a
realistic situation. We are looking for a minimum of Vg, not a maximum. Thus we require
Vi > 0.

PV =—2MGr2+34%r —12MG j2=
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Finally, we study the orbits for the three cases.

i)

22

% >1 = No circular orbits (imaginary roots r)
i)

2 12

% <1 = One stable orbit (r4), and one unstable orbit (r_)
iii)
12 M2G? 52
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Only a single orbit is possible. V.g has a saddle point.
Classical limit: 2 M G < j
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Usually r- =3 MG = % rs is inside the massive object. The Schwarzschild solution only applies

to free space, so if we really want to do this inside an object, we would have to consider R,, —
%gWR:—Sﬂ'GTW.

In the classical limit there is one stable orbit at 7 = j2/MG.



