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Today we will discuss action. We will talk a bit more about general coordinate transformations,
and maybe an alternative way of understanding them and what they do.

Action principle for gravity?

An action is a functional. It is some function, some field, and put it into a box, and out comes a
number — that is a functional. A functional is a function that takes a function and maps it to a
number. So an action is a functional on the space of field configurations. But it is not just any
functional.

Say we have some field φ(x) (in our case, ultimately, we will treat the field gµν(x) — the metric
itself).

φ(x)� S � S[φ]∈R

The action is denoted S[φ], with square brackets being standard notation for functionals. The
action is a functional on the space of field configurations whose extrema are solutions of field

equations .

Example: Classical mechanics:

S =

∫

dt (T −V ) =

∫

dt

(

1

2
m ẋ2−V (x)

)

S[x + ε] =

∫

dt

(

m ẋ ε̇ − dV

dx
ε

)

=

∫

dt ε(t)

[

−m ẍ − dV

dx

]�
=:

δS

δx(t)

This is more or less the definition of the functional derivative.

OK, that was just a reminder. In our case, we want a similar expression for the field gµν:

S[g] = constant×
∫

d4x |g |
√

( ? )

What to write here? It should be a scalar. If it does not transform covariantly, I don’t expect
the equations that come out to be covariant. So it is a scalar. We also know that Einstein’s
equations contain two derivatives. How much choice do we have? We can choose the curvature
scalar R.

S[g] = k

∫

d4x |g |
√

R

We could also enter a constant in addition to R, and that way we can enter the cosmological
constant into the equations.

What about the constant k? S[g] has dimension M L, since S/~ is dimensionless (compare path

integrals in quantum mechanics). R has dimension L2, and d4x has dimension L4. The integral
is thus L2. [G] = M−1 L. So a 1/G would be appropriate.

S[g] =− 1

8πG

∫

d4x |g |
√

R
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This is what we will want right now. We will see why this is a good thing. This is our candidate
for an action for gravity. Now it is time to see how it works. We want to take the functional
derivative of this candidate action with respect to the metric field gµν(x). We have to be careful,

since the integration measure contains the metric as well, in |g |
√

.

I remind you of how curvature is defined:

−Rµν
ρ

σ = (∂µΓν − ∂νΓµ + Γµ Γν −Γν Γµ)
ρ

σ

− δRµν σ

ρ = (∂µδΓν − ∂νδΓµ + δΓµΓν + ΓµδΓν − δΓνΓµ −ΓνδΓµ)
ρ

σ

∂µδΓν +ΓµδΓν − δΓνΓµ = ∂µδΓν + [Γµ, δΓν]

[Γµ, δΓν] is the two terms in DµδΓν where Γ acts on the two “invisible” indices.

− δRµν
ρ

σ = (Dµ δΓν −Dν δΓµ)ρ
σ

The difference of two connections is always a tensor.

We are not interested in the Riemann curvature tensor in itself, so go to the Ricci tensor:

− δRνσ =Dµ δΓ
νσ

µ −Dν δΓ
µσ

µ

Now we could start talking about the variation of Γ in terms of the variation of g, but we don’t
need that. We will see that in a moment.

|g |
√

R = |g |
√

gµν Rµν

δg−1 =− g1 δg g−1

Do you recognise this last expression? It is very simple: δ(g g−1) = 0 = δg g−1 + g δg−1. This is a
handy formula.

Now we have to take the variation of the determinant.

δ(det g)= det g tr(g−1δg)

One can show this in several ways. exp(trM)= det(exp(M)). (Easy to see if M is diagonal.)

δ det g
√

=
1

2
det g

√
tr

(

g−1 δg
)

Now we are ready to take the variation of S:

δS =− 1

16πG

∫

d4x

{

1

2
|g |

√

gρσδgρσ gµν Rµν −

− |g |
√

gµρ δgρσ gσν Rµν + |g |
√

gµν
(

−DρδΓµν

ρ + Dµ δΓ
νρ

ρ
)

}

This last thing is the integral of a divergence:

|g |
√

DρV
ρ where V ρ =− gµνδ

µν

ρ + gρνδΓ
µν

µ

Dρ V ρ =
1

|g |
√ ∂ρ

(

|g |
√

V ρ

)
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So |g |
√

DρV
ρ is just an ordinary divergence, and gives rise to boundary terms, which we in turn

ignore. So the entire thing that came from the variation of the Ricci tensor goes away, without
us ever needing to consider what δΓ really is in terms of the metric.

δS =− 1

8πG

∫

d4 g
√

δgρσ

{

−Rρσ +
1

2
gρσR

}

Action principle ⇒

Rµν − 1

2
gµν R = 0.

This is what Hilbert realised. The action is called Einstein-Hilbert action.

If we want matter to interact with the field:

S =− 1

8πG

∫

d4x |g |
√

R + Smatter[φ, g]

1

|g |
√ · δS

δgµν(x)
=

1

8πG

(

Rµν − 1

2
gµνR

)

+
1

|g |
√ · δSmatter

δgµν

If we want Rµν − 1

2
gµν R =− 8πGTµν to hold, we must have

1

|g |
√ · ∂Smatter

∂gµν

= T µν

(“Gauge symmetry”): general coordinate transformations (diffeomorphisms). (Diffeomorphisms
is, at least for a physicist, the same thing as coordinate transformations.) Consider an infinites-
imal change x′µ = xµ + εµ(x). Everything depends on the transformation matrix

M µ
ν =

∂x′µ

∂xν
= δ

ν

µ + ∂ν εµ

(

M−1
)µ

ν = δµ
ν − ∂νε

µ

gµν

′ (x′) =
(

δ
µ

ρ − ∂µερ
)

(∂ν

σ − ∂ν εσ) gρσ(x)

I don’t change the coordinates, and ask how the field changes. [Active view of the transforma-
tion.]

gµν

′ (x′)≃ gµν

′ (x)+ ερ∂ρ gµν

′ (x)

The difference between gµν and gµν

′ is of order ε, so to order ε we can remove that prime:

gµν

′ (x)≃ gµν

′ (x)+ ερ∂ρgµν(x)

δgµν(x)= gµν

′ (x)− gµν =− ερ∂ρgµν − ∂µερ gνρ − ∂νε
ρgµρ

“This looks completely stupid, but it is not.”

δgµν(x)=− εσ gσρ∂ρgµν − ∂µεν + εσ gρσ ∂µgνρ − ∂νεµ + εσ gρσ ∂νgµρ =

=− ∂µεν − ∂νεµ +2Γ
µν

ρ
ερ =−Dµεν −Dνεµ =− 2 D(µεν)

δgµν(x) =− 2D(µεν)
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Take this variation and plug into the action and see what happens:

δS =

The action should not depend on my choice of coordinates. This is a symmetry of the theory.
We must get δS =0.

δS =− 1

8πG

∫

d4x |g |
√

(− 2Dµεν)

(

Rµν − 1

2
gµνR

)

+

∫

d4x |g |
√

(− 2Dµεν)T µν

[“The world is made for me to make sloppy partial integration”].

DµT µν =0

This is how coordinate transformation leads to the conservation of a current.

S =

∫

d4x

(

− 1

4
Fµν F µν +AµJµ

)

What happens when you vary Aµ? This gives you Maxwell’s equations. δAµ = ∂µΛ gives you
conservation of current. Gauge symmetry� conserved current.
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