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The geometry is specified by gµν(x). But just looking at the metric does not really tell you what
the geometry is, since we have an enormous freedom in choosing the coordinate system. Is it
flat, is it curved? Finding a coordinate transformation that makes this obvious is not trivial.

We had the affine connection, constructed from the metric as

Γµν
λ =

1

2
gλρ(∂µ gνρ + ∂ν gµρ − ∂ρ gµν)

But this is not a tensor. It can be nonzero even in flat space, so it is not a good measure of
whether space is curved or not. The main reason why this is important although it is not a
tensor, is that we can use it to define a covariant derivative Dµ, since the ordinary derivative
does not, in general, give us a tensor.

DµV ν = ∂µ V ν +Γνλ
µ

V λ
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This is the only sensible way of defining a derivative, as can be seen by using the equivalence
principle. In the local inertial frame it is just the ordinary derivative, and the rest is just a
coordinate transformation. For lower indices:

DµVν = ∂µVν −Γµν
λ Vλ

Now we are ready to take the step to define curvature. We will not follow the beginning of
Chapter 6 in Weinberg, but go directly to section 6.5. We look at how the covariant derivative
works. Let’s write DµV ν in a slightly more suggestive way. Consider V µ as a vector, and for

each µ, we view (Γµ) λ
ν as a matrix:

DµV ν = [(∂µ + Γµ)V ]
ν

(The derivative ∂µ is understood to be I ∂µ where I is the identity matrix.) This is just ordinary
matrix multiplication. The result is a tensor.

Now, what happens if we take two derivatives after each other? Say we are in some point P ,
and want to go to some other point Q. (Consider this to be infinitesimally small.) We take one
step along one coordinate direction, and one step along another. Doing parallel transport of a
vector. Γ will rotate the vector and we can get different vectors at Q depending on which order
we took the displacements from P .

Figure 1.

Looking at parallel transport on a sphere: Say we start with a vector / a stick on the north pole,
pointing southward. Then we take the vector and walk down to the equator — the vector still
points southward. Then, without changing the direction of the stick, walk along the equator,
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and then go back up to the north pole. The initial direction and the final direction of the vector
will differ. The vector has turned, due to the geometry of the sphere.

Now, back to the infinitesimal case. Compare the effect of DµDν with that of DνDµ. To avoid
drowning in indices, we will use the matrix notation, V denoting the vector with indices V λ.

DµDνV = (∂µ + Γµ)(∂ν + Γν)V = ∂µ∂ν V + ∂µ(ΓνV )+ Γµ∂νV + ΓµΓνV

(Note: these are matrices. The order is important.)

= ∂µ∂ν V + (∂µΓν)V +Γν∂µV +Γµ∂νV + ΓµΓνV

Let us now study the difference, let us study (DµDν − DνDµ)V . I have marked the terms that
are symmetric in µ and ν with a wide tilde above: these we do not have to care about when cal-
culating (DµDν −DνDµ)V .

(DµDν −DνDµ)V = (∂µΓν − ∂νΓµ +ΓµΓν −ΓνΓµ)�
Matrix! Two indices are suppressed.

V

All derivatives of V have dropped out. [Dµ, Dν]≡DµDν −DνDµ is not a differential operator. It
is just multiplicative. It is, actually, what we call the curvature. With indices written out:

([Dµ, Dν]V )
λ =−Rµν κ

λ V κ

(or matrix-wise, we can think of Rµν κ
λ as (Rµν) κ

λ
) where

Rµν κ
λ =− (∂µΓν − ∂νΓµ +ΓµΓν −ΓνΓµ)

κ

λ =

=−
(

∂µΓνκ
λ

− ∂νΓνκ
λ +Γµρ

λ Γνκ
ρ

−Γνρ
λ Γµκ

ρ
)

Rµν κ
λ is the matrix that encodes the difference between vectors that are parallel transported

along ν, µ and µ, ν. This is the tensor that tells us how the space is curved, and it tells us
everything about how the space is curved. Why the minus sign? That is Weinberg’s fault. It is
more common to have a plus sign in the definition. It is a convention, and Martin Cederwall
would have preferred the plus sign.

Let us take a couple of examples. Last week we did polar coordinates in flat space — let’s calcu-
late the curvature of flat space using polar coordinates. (If someone asked you to calculate the
curvature of flat space, it would be more expedient to use Cartesian coordinates, making Γµν

λ

vanish and Rµν κ
λ =0.)

ds2 = dr2 + r2 dϕ2

Γϕϕ
r =− r, Γrϕ

ϕ = Γϕr
ϕ =

1

r
, all otherΓνλ

µ vanish.

−Rrϕ ϕ
r = ∂rΓϕϕ

r
−Γϕϕ

r Γrϕ
ϕ =− 1− (− r)

1

r
= 0

[and the other one]

This vanishes. Since Rµν κ
λ is a tensor, we know that it vanishing in one coordinate system

means that it’s vanishes in all coordinate systems.
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Let us take a close look at curvature and see what it is. We have already mentioned that there
is antisymmetry in the µν indices of Rµν κ

λ .

Rµνρσ = gρλ Rµν σ
λ =� =

=
1

2
(∂µ∂ρ gνσ − ∂ν∂ρ gµσ − ∂µ∂σ gνρ + ∂ν∂σgµρ)+ gκλ

(

Γµρ
κ Γνσ

λ
−Γµσ

κ Γνρ
λ

)

The reason for writing it like this is that the symmetries are more obvious. We will not actually
use this when calculating the curvature tensor. We see here that we have antisymmetry in [µν]
and in [ρσ]. This is not all. µν↔ ρσ symmetric.

Rνµρσ =−Rµνρσ, Rµνσρ =−Rµνρσ, Rρσµν = Rµνρσ (1)

Sum the cyclic permutations of the last three indices:

Rµνρσ + Rµρσν +Rµσνρ≡ 3Rµ[νρσ] = 0 (2)

(Example: Fµν = ∂µAν − ∂νAµ≡ 2 ∂[µAν]).

Now we want to count the number of independent components in Rµνρσ, in n dimensional space.

[µν] antisymmetric D ×D-matrix: D(D − 1)/2. (Symmetric: D (D + 1)/2)

Using (1): “R is symmetric
D(D − 1)

2
×

D(D − 1)

2
-matrix”

→

D(D − 1)

2

(

D(D − 1)

2
+1

)

2
=

1

8
D(D − 1)

(

D2
−D + 2

)

But this is not all, we have to take (2) into account. We subtract the number of components “in
Rµ[νρσ]”. (This step is very easy to get wrong. Given the first properties (1), for any tensor
having these properties: Rµ[νρσ] = R[µνρσ] — nice homework.) D(D − 1)(D − 2)(D − 3) – the first
index can be chosen in D ways, the next index must be different, and so on. And we have to
divide by the number of permutations:

D(D − 1)(D − 2)(D − 3)

4!

So we subtract this number. The final result for the number of components in Rµνρσ is

1

8
D(D − 1)

(

D2
−D + 2

)

−
1

24
D(D − 1)(D − 2)(D − 3)=

1

12
D2

(

D2
− 1

)

Rµν
κ

λ = Rκ
λµν

What can we do with this? We can form smaller tensors by contracting indices.

Rµν ≡Rλµ
λ

ν

We call Rµν
κ

λ the curvature tensor (Riemann tensor). We call Rµν the Ricci tensor. Rµν is
symmetric in µν. We can also form

R = gµν Rµν

which is called the curvature scalar. Now Einstein’s equations are not too far away.
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Reminder: “current” for gravity is Tµν. Rµν +� ∝ Tµν? This could be field equations for gravity.
Why is it nice? In the Ricci tensor we have two derivatives on gµν, and we need to reproduce
Newton’s gravity: ∇2Φ∼ ρ.

Riemann:

Riemann:
1

12
D2

(

D2
− 1

)

Ricci:
1

2
D(D + 1)

Curvature scalar: 1

D Riemann Ricci R

1 0 0∗ 0∗

2 1 1∗ 1∗

3 6 6 1
4 20 10 1
5 �

∗We cannot use the formula here, due to the low dimensionality of space.

In two dimensions we only have to give R1212 to know everything. That is why, above, we only
needed to calculate Rrϕrϕ.

In three dimensions, the Ricci tensor contains all the information of the Riemann tensor. That
means that the geometry is completely fixed by the matter distribution. No gravitational waves.

In four dimensions, we have more information in the Riemann tensor than in the Ricci tensor.
This is very interesting. We can have gravitational waves.
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