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Exercises 2.1, 2.2 and 3.1

“Find the metric for a flat two-dimensional surface expressed in polar coordinates.”
(Problem 2.1)

“Calculate the affine connection Γµν
λ associated with the metric obtained in the

previous exercise.”
(Problem 2.2)

“Write down the equations of motion for a free particle on a flat two-dimensional
surface expressed in polar coordinates.”
(Problem 3.1)

Plane x, y→ r, ϕ (xi→x′i).

ds2 = dx2 + dy2 = δij dxi dxj

{

x= r cos ϕ

y = r sin ϕ
, gij

′ =
∂xk

∂x′i

∂xl

∂x′j
δkl

Or differentiate x =� , y =� directly:

{

dx= dr cos ϕ− r dϕ sin ϕ

dy =dr sin ϕ+ r dϕ cos ϕ

In this case we can even draw a general ds in polar coordinates, with radial component dr and a
component r dϕ perpendicular to it, the Pythagorean theorem gives ds2 =dr2 + r2dϕ2 directly.

ds2 = dr2 + r2dϕ2

grr = 1, gϕϕ = r2, grϕ = gϕr = 0, g =

(

1 0

0 r2

)

Inverse metric:

grr = 1, gϕϕ =
1

r2
, grϕ = gϕr = 0

We know that the geodesics will be straight line (the shortest path between two points is the
straight line). Using polar coordinates we should be able to get some results familiar from New-
tonian mechanics.

Γµν
λ =

1

2
gλρ(∂µ gνρ + ∂ν gµρ − ∂ρ gµν)

Any nonzero derivative has to be ∂r. And it has to be the derivative of gϕϕ. The inverse metric
doesn’t interchange r, ϕ since it is diagonal. The only ones we have to check are Γϕϕ

r and Γrϕ
ϕ ( =

Γϕr
ϕ ). All the others vanish.

Γϕϕ
r =−

1

2
· 1 · ∂rr

2 =− r

Γrϕ
ϕ =

1

2
·

1

r2
· ∂rr

2 =
1

r

1



We can check this by writing down the geodesic equation, and see if we get things we can recog-
nise.

d2xµ

dτ2
+ Γνλ

µ dxν

dτ

dxλ

dτ
= 0

d2r

dτ2
− r

dϕ

dτ

dϕ

dτ
= 0

d2ϕ

dτ2
+ 2 ·

1

r
·
dr

dτ
·
dϕ

dτ

Do you recognise these equations? You should! Let overdot be the derivative: ˙ =
d

dτ

{

r̈ − r ϕ̇ = 0
rϕ̈ + 2 ṙϕ̇ =0

The first is the radial component of the acceleration, ar. The second is the angular part of the
acceleration, aϕ.

Note that the existence of Γµν
λ � 0 does not necessarily mean that the space is curved.

Exercises 2.4 and 3.2

“Find the metric and affine connection on the surface of a two-sphere of radius a

embedded in a Euclidean three-dimensional space.”
(Problem 2.4)

“Find all geodesics on the surface of a two-sphere of radius a embedded in a Euc-
lidean three-dimensional space.”
(Problem 3.2)

Two-dimensional sphere, S2.






x = a sin θ cos ϕ

y = a sin θ sin ϕ

z = a cos θ

ds2 =(a dθ)
2
+ (a sin θ dϕ)

2
= a2

(

dθ2 + sin2θ dϕ2
)

gθθ = a2, gϕϕ = a2 sin2θ

g = a2

(

1 0

0 sin2θ

)

, g−1 = a−2

(

1 0

0 csc2θ

)

The only non-vanishing components are Γϕϕ
θ and Γθϕ

ϕ = Γϕθ
ϕ .

Γϕϕ
θ =− sin θ cos θ

Γϕθ
ϕ =

1

2
·

1

sin2θ
· 2 sin θ cos θ = cot θ

Geodesic equations:
{

θ̈ − sin θ cos θ ϕ̇2 = 0

ϕ̈ + 2 cot θ · θ̇ ϕ̇ = 0

2



Multiply the second equation by sin2θ, and we get a total derivative.

sin2 θ ϕ̈ + 2 sin θ cos θ · θ̇ϕ̇ =
d

dτ

(

sin2θ · ϕ̇
)

The solutions turn out to be great circles.

For θ =
π

2
the equations are 0 = 0 and ϕ̈ = 0, and we get θ =

π

2
, ϕ = ϕ0 + ωτ . So instead of solving

the equations generally, we can use adjust the coordinate system so that we get the apropriate
initial conditions for this solution. Thus all the solutions are great circles, by symmetry.

An exercise not on the list.

Levi-Civita symbol εµνκλ:

εµνκλ =







1 if µ, ν, κ, λ is an even permutation of 0, 1, 2, 3
− 1 if µ, ν, κ, λ is an odd permutation of 0, 1, 2, 3
0 otherwise (two or more indices equal)

This holds in all coordinate systems.

Is this a tensor? In special relativity it is, but in general relativity it is not.

Transformation properties: ε′
µνκλ

= εµνκλ by definition.

Compare with

∂x′µ

∂xα

∂x′ ν

∂xβ

∂x′κ

∂xγ

∂x′λ

∂xδ
εαβγδ�

completely antisymmetric ⇒∝εµνκλ

[“I’m extending the greek alphabet with letters from the beginning of the greek alphabet.”]

What is the proportionality constant?

∂x′µ

∂xα

∂x′ ν

∂xβ

∂x′κ

∂xγ

∂x′λ

∂xδ
εαβγδ = k εµνκλ

Take µνκλ= 0123.

k =
∂x′ 0

∂xα

∂x′ 1

∂xβ

∂x′ 2

∂xγ

∂x′ 3

∂xδ
εαβγδ ≡Mα

0 M β
1 M γ

2M δ
3 εαβγδ2def detM =

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

εµνκλ = ε′
µνκλ

=

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

1
(

∂x′µ

∂xα

∂x′ ν

∂xβ

∂x′κ

∂xγ

∂x′λ

∂xδ
εαβγδ

)

εµνκλ is a tensor density of weight 1.

Important examples of densities:

• |g | — what is the weight?

• d4x (that we use when we integrate).
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