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Today we will essentialy work with the stuff we have defined so far, such as the metric tensor

and the affine connection Γµν
λ , and we will talk about vectors and tensors in general relativity.

We will see what the problem is with the affine connection, why it is not a tensor. We will be
able to turn this to our advantage, when we define derivatives. But first a little something about
what we had intended to do the last time.

We had talked about how particles move in the presence of gravity. We have seen the geodesic
equation that governs particle motion; the very same equation without time, on some curved
space, defines a geodesic — a sort of straight line on a curved surface (the only meaningful
definition of “straight line” on a curved surface). We also talked about the Newtonian limit and
found what exactly the Newtonian potential is.

“Time dilation” — a very physical effect of describing gravity with geometry. We had time
dilation in special relativity, but this is really a different thing, and it is a pity that the same
term is used for both things. What we will do is to consider a particle, or an observer, with
some kind of internal clock, moving in some gravity field. (We will be more specific in a
moment.) We have some coordinates, x, y, z, t. There is nothing that says that this is the
ordinary Minkowski spacetime. The metric gµν(x) may vary from place to place. The particle
traces out some world-line. The question we ask ourselves is, how often does the clock of the
particle/the observer tick, as compared to the time coordinate t? What is dτ (the observer’s
proper time) compared to dt (coordinate time)? The answer to this lies in special relativity, in
the equivalence principle.

The equivalence principle states that there is a local inertial system, where dτ = − ηαβ dξα dξβ

√

in accordance with special relativity. Changing coordinates to x, we have dτ = − gαβ dxµ dxν
√

.

How that relates to dt is seen by dividing with dt. (It is not a scalar, but that is fine here.)

dτ

dt
= − gµν

dxµ

dt

dxν

dt

√

In the end we want to compare different observers. Let us specialise on a “clock” at coordinate

rest,
dxi

dt
= 0.

⇒ dτ

dt
= − g00
√

From yesterday we known that in the Newtonian limit g00 = − 1 − 2 Φ, where Φ is the gravita-
tional potential.

To be very concrete, what do we see? Say that the gravitational field is constant in time, such
that the gravitational field from the earth, and study a clock (1) at sea level. Suppose further-
more that we have another observer (2) situated a bit higher up, and looking at the electromag-
netic radiation from the clock (1), studying its ticking. Clock (1) ticks with a period time ∆τ1,
and the observer (2) measures a period time ∆τ2. Both these have a relation to coordinate time.

∆τ1

∆t
= − g00
√ ∣

∣

∣

1

,
∆τ2

∆t
= − g00
√ ∣

∣

∣

∣

2

∆τ2

∆τ1

=
− g00|2
− g00|1

√

≃ [Newton]≃ 1 + 2Φ2

1 + 2Φ1

√

≃ 1 +2(Φ2−Φ1)
√

≈ 1+ Φ2−Φ1 = 1−M G

(

1

r2

− 1

r1

)

If r2 > r1 we would expect to see a longer period: if light has to work against gravity it loses
energy, and that lowers the frequency (E =h ν). ∆τ2 > ∆τ1. This is gravitational redshift .

Vectors and tensors

1



dxµ is sort of the prototype vector. How does dxµ transform when we change coordinate
system?

dx′µ =
∂x′µ

∂xν
dxν

For an arbitrary vector, this is the rule:

A′µ =
∂x′ µ

∂xν
Aν

Tensors: T µν transform similarly for each index:

T ′µν
=

∂x′µ

∂xρ

∂x′ ν

∂xσ
T ρσ

Lower with gµν:

Aµ≡ gµν Aν

gµν =
∂ξα

∂xµ

∂ξβ

∂xν
ηαβ

How does this transform? I’m not changing the ξα, I change the xµ.

gµν
′ =

∂ξα

∂x′µ
∂ξβ

∂x′ ν
ηαβ =

[

∂ξα

∂x′µ
=

∂ξα

∂xρ

∂xρ

∂x′µ

]

=
∂xρ

∂x′µ
∂xσ

∂x′ ν
gρσ

If ∂x′µ/∂xν is the matrix M , then ∂xρ/∂x′µ is the inverse matrix M−1.

Aµ
′ = [“this is boring”] =

∂xρ

∂x′µ
∂xσ

∂x′ ν
gρσ

∂x′ ν

∂xλ
Aλ

[“Once we’ve learned the rules, we can forget them.”]

[

∂xσ

∂x′ ν
∂x′ ν

∂xλ
= δλ

σ

]

Aµ
′ =

∂xρ

∂x′µ
gρλ Aλ =

∂xρ

∂x′µ
Aρ

gµν is a tensor!

Aµ
′ B ′µ =� = AµBµ

We can do scalar products!

We can multiply things together: AµBν is a tensor.

There is one difficulty, and that’s derivatives.

A′µ =
∂x′µ

∂xν
Aν

Aµ
′ =

∂xν

∂x′µ
Aν

{dxµ} basis, A = dxµ Aµ. We call A the “1-form”.
{

∂

∂xµ

}

basis, B =Bµ ∂

∂xµ . This is a “vector field”.
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(The two terms above are from differential geometry, and will not figure prominently in this
course.)

Let us take a close look at the connection. The affine connection is

Γµν
λ =

∂xλ

∂ξα

∂2ξα

∂xµ ∂xν

This was one possible definition. We can also define it in terms of derivatives of the metric:

Γµν
λ =

1

2
gλρ(∂µ gνρ + ∂ν gµρ − ∂ρgµν)

We will use the first definition now.

Γ′

µν
λ

=
∂x′ λ

∂ξα

∂2ξα

∂x′µ ∂x′ν
=

∂x′ λ

∂xρ

∂xρ

∂ξα
· ∂

∂x′µ

(

∂ξα

∂xσ
· ∂xσ

∂x′ν

)

Γ′

µν
λ

=
∂x′λ

∂xρ

∂xσ

∂x′ν
∂xτ

∂x′µ
Γστ

ρ +
∂x′λ

∂xρ

∂2xρ

∂x′µ ∂x′ ν

Γ is not a tensor.

Derivatives

On scalar: ∂µφ:

(∂µφ)
′ =

∂φ

∂x′µ
=

∂xν

∂x′µ
∂φ

∂xν
=

∂xν

∂x′µ
∂νφ

This was a vector.

On a vector V µ

(∂νV
µ)

′=
∂V ′µ

∂x′ ν
=

∂xρ

∂x′µ
∂

∂xρ

(

∂x′µ

∂xσ
V σ

)

When the derivative hits the vector, we get desirable things. But when it hits the transforma-
tion matrix we get bad stuff.

(∂νV
µ)

′=
∂xρ

∂x′ ν
∂x′µ

∂xσ
∂ρ V σ +

∂xρ

∂x′ ν
∂2x′µ

∂xρ∂xσ
V σ

The plain derivative of a vector, is not a vector. The second term above spoils everything.

V µ a vector ; ∂µV ν a vector!

∂µ is not a covariant operator. (A covariant operator takes vectors and tensors, to vectors and
tensors.)

• Idea: Calculate
∂Aα

∂ξβ
and transform.

The failure of the derivative to be a tensor, looks very much like the failure of the Γµν
λ to be a

tensor. The idea is to combine them into something that will transform the right way:

DµV ν ≡ ∂µV ν + Γµλ
ν V λ

This is the only way of defining a covariant derivative.

∂µWν −Γµν
λ Wλ
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The signs here are not obvious. You have to check it. But these two latter expressions are

tensors.

Particle:

d2ξα

dτ2
= 0

d

dτ
=

dxµ

dτ

∂

∂xµ ,
D

Dτ
=

dxµ

dτ
Dµ

dxµ

dτ
is clearly a vector

D

Dτ

dxµ

dτ
= 0

d2xµ

dτ2
+Γνλ

µ dxν

dτ

dxλ

dτ

Check, as a homework, that Dµgνλ = 0. gµν is covariantly constant (which is a very nice prop-
erty).

4


