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Today we will actually start describing gravity. When doing that we gradually introduce the rel-
evant mathematics involved, the mathematics needed to describe curved space and curved
spacetime. The level of mathematical rigour will be very low, we will do what we actually need.
We will normally not care at all about what spaces the functions belong to, how many times
they are differentiable and so on.

We have mentioned the need of a field theory of gravity. What happens if we move the sun?
Locality is an important principle, normally, in physics. The situation is analogous in “any reas-
onable theory”. No action at a distance. While we may talk about a gravitational potential in
Newtonian mechanics, we don’t know how it behaves and what happens to it when things move
around in it.

Gravity is a sort of a funny force, because you don’t feel it if you are in free fall. While you are
falling, it is like being in outer space: you don’t feel gravity. This leads us to the equivalence
principle:

Equivalence principle: There is no measurable difference between gravity and the effect of
acceleration.

This means that [draws an elevator]. It is broken, standing on the ground. No windows. This is
a thought experiment, in the same vein as those imagined by Galileo Galilei. You can drop an
apple in the elevator, and see how it falls.

Next imagine the elevator in outer space, accelerating upward with an acceleration g. The
inhabitants of the elevator experience an inertial force. If you drop an apple in the elevator, it
continue to travel at its initial velocity, while the elevator accelerates away from it. So the apple
seems, relative to the elevator, to be accelerating downward with the same acceleration g.

Let us now imagine that these two scenarios are the same. (That there is no measurable differ-
ence.) There is one assumption here, that is “sort of funny”. Consider two different kinds of
apple, made of different kind of materials. In the free space scenario they both remain at the
same velocity, and the inhabitants of the elevator measure them falling with the same accelera-
tion g. In the gravitational case, one might imagine that the fall with different accelerations. It
depends on the nature of gravity. Experiments have been done, e.g. by the Hungarian physicist
Eötvös.

Thinking for the moment in Newtonian terms, mi a = mg g, where mi is the inertial mass. mg is
the gravitational mass. There is really no reason that they ought to be the same: here we need
experimental input. The experiments say that mi = mg. This is an assumption, and we will now
assume this.

From now on we will describe gravity in terms of acceleration.

This is a bit absurd. Thinking about a small elevator is one thing, but consider the entire earth!
It would make sense to say that this room is accelerating upwards, but the earth is round and
they teach physics in Australia too. If all rooms are accelerating upwards, it would seem that
the circumference of the earth itself would accelerate, that the earth would expand, accelerating.
That is not the case. We have to consider small elevators for the equivalence principle to hold.
The equivalence principle holds locally.

How do we use this equivalence principle? We reformulate the statement a bit:

• There is always a set of (local) inertial systems where physics look like special relativity. The
freely falling system will be an inertial frame in the sense of special relativity.

What was really the hurdle at this point is that, at this point, we need to do geometry. Con-
sider spatial geometry, like a plane, where the Pythagorean theorem holds. And consider curved
surfaces, such as the surface of a sphere. Given any point at a curved space (not necessarily a
sphere), if you don’t go too far from this point the surface looks sort of flat. You can always
approximate the space close to a given space, with a tangent plane in that point. This is the
reason why people once thought the earth was approximately flat (give or take a few mountains
and valleys and stuff).
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• In space, there is always a (local) tangent plane.

We can do something similar in curved spacetime, with an inertial frame being a “tangent plane”
at an event (a point in spacetime), a tangent Minkowski space. This was the brave leap that
Einstein did. Now, we just have to formulate the mathematics of curved spacetime. We know
what happens in a local Minkowski space, and then we just do a coordinate transformation. We
will, rather soon, get rid of the inertial coordinates altogether, and work in curved spacetime.

Consider a particle moving under influence of gravity:

What do we know? In general we don’t know anything, but we know that there is an inertial
frame where the effects of gravity are not felt. (Well, there are several, related by Lorentz trans-
formations.) In the (local) inertial system with coordinates ξα, the velocity is constant:

d2 ξα

dτ2
= 0, where dτ2 =− ηαβ dξα dξβ.

Now we change coordinates to some xµ on spacetime. We can see xµ as functions of the ξα, or
the ξα as functions of xµ. Using the chain rule of differentiation:

0 =
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dτ

)
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dτ2
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·
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d2xµ

dτ2
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∂ξβ
·
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∂xν ∂xλ�
=Γνλ

µ

dxν

dτ

dxλ
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Γνλ
µ is called the affine connection. In some sense Γνλ

µ encodes the information about gravity. It
is a sign of gravity — or a sign of a silly choice of coordinates. (Think about a plane, τ being

length along the path.
d
2 ξα

dτ2
= 0 gives a straight line. If we choose polar coordinates xµ, we will

get a nonzero Γνλ
µ , so that in itself does not imply gravity.)

If gravity is really present (in the sense that the spacetime is really curved), then Γνλ
µ (which

looks like a tensor, but is not) then Γνλ
µ � 0. But it can be nonzero on flat space if we use non-

inertial coordinates. A tensor is either zero, or it is not, it cannot choose to be zero in one set of
coordinates without being it in the others as well.

d2xµ

dτ2
+ Γνλ

µ dxν

dτ

dxλ

dτ
= 0

is called the geodesic equation. The solution of this equation, the world-line of a particle, is
called a geodesic. (Swedish: geodet .) As an exercise, solve the geodesic equation for a sphere,
and see that the geodesics are the great circles.

ds2 =− dτ2 = ηαβ dξαdξβ = ηαβ
∂ξα

dxµ

∂ξβ

∂xν�
=gµν

dxµ dxν

Formally, it looks like special relativity, ds2 = ηαβ dξαdξβ = gµν dxµ dxν, but gµν can be more
general things not considered in special relativity. gµν is called the metric tensor , a 4 × 4 sym-
metric matrix (10 independent components). It is a function of the coordinates xµ, gµν(x). Γνλ

µ

encodes how gµν changes when we move around.

Now, let us get rid of ξα, let us get rid of the tangent Minkowski space. We base our theory on
gµν directly, rather than inertial coordinates ξα. Γνλ

µ looks like it is going to make trouble, but
we can get around that.

gµν =
∂ξα

∂xµ

∂ξβ

∂xν
dxµ dxν
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Using the notation ∂λ =
∂

∂xλ
, and taking the derivative:

∂λ gµν =
∂2ξα

∂xµ ∂xλ

∂ξβ

∂xν
ηαβ +

∂2ξα

∂xν ∂xλ

∂ξβ

∂xµ ηαβ

This looks a bit like Γνλ
µ , but not quite.

∂2ξα

∂xµ∂xν
=

∂ξα

∂xλ
Γµν

λ

∂λgµν = Γµλ
ρ ∂ξα

∂xρ

∂ξβ

∂xν
ηαβ�

=gρν

+Γνλ
ρ ∂ξα

∂xρ

∂ξβ

∂xµ ηαβ�
=gρµ

∂λgµν = Γµλ
ρ

gρν + Γνλ
ρ

gρµ

∂µ gνλ + ∂ν gµλ − ∂λgµν = [homework] = 2Γµν
ρ

gρλ

Γµν
λ =

1

2
gλρ (∂µ gνρ + ∂ν gµρ − ∂ρgµν)

The inverse of gµν is (g−1)µν = gµν. This is just notation. It is the ordinary matrix inverse.

Now we have Γµν
λ in terms of the metric tensor gµν, and we do not have to resort to inertial sys-

tems, no ξα needed.

Now, can we reproduce Newtonian gravity in this theory?

The Newtonian limit:

We assume (1) that velocity ≪ 1.

dxi

dτ
≪

dt

dτ
, t≡x0

We also assume (2) that ∂0gµν = 0, since we can only handle static situations using Newtonian
gravity.

0≃
d2xµ

dτ2
+ Γ00

µ

(

dt

dτ

)

2

Γ00
µ =−

1

2
gµν ∂νg00

Newtonian gravity only applies to weak gravitational fields (no black holes here), so we assume
(3) that gµν = ηµν + hµν.

Γ00
µ =−

1

2
ηµν ∂ν h00

0≃
d2xi

dt2
−

1

2
∂ih00

d2
x

dt2
=

1

2
∇h00

By setting h00 =− 2Φ,

d2
x

dt2
=−∇Φ.

Only one component of the entire metric becomes relevant in this limit. Φ is the gravitational
potential of Newtonian gravity.
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