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Course home page: 〈http://fy.chalmers.se/~tfemc/Gravitation〉. There will be home
assignments published on the home page. Deadlines (roughly) fourth and seventh week for the
home assignments, some time in January for the home exam.

Newton: description (“I’m not calling it a theory”) of static gravity.

F =
m1 m2 G

r2

Newton realized that this was not enough. If one body is moved, when does the other know?
Instantly? After some time? Newton did not solve this problem, but he realized that it was
there. That is one of the questions that provides us with our main motivation (apart from the
other faults of the Newtonian description).

— What if bodies move?

Does the gravitational influence travel with the speed of light? [Yes.] Note the similarity
between F = G m1m2/r2 and the electrostatic force of the Coulomb law. Electrodynamics
cannot be derived from the Coulomb law, we need to take the step to Maxwell’s equations. We
want to do something similar for gravity.

• We need a field theory for gravity!

Special relativity

Galileo:














x′= x− v t

y ′= y

z ′= z

t′ = t

This is not the way nature works. (It is, approximately, when velocities are low.)

Einstein: Lorentz transformations



















x′= γ(v) (x− v t)
y ′= y

z ′= z

t′= γ(v)
(

t−
v

c2
x
)

, γ(v)=
1

1−
v2

c2

√

This is just a special case, when one system moves along the x axis, but it contains all we need
to know. γ(v) goes from 0 at v =0 to +∞ as v→ c.

We will use a much more compact notation. The first thing we want to do, and then keep it
that way throughout the course, is to choose our units in the natural way: c = 1. If a year is my
unit for time, a light-year is my unit for length. The symmetry between x and t is also clearer
now: x′ = γ (x − v t); t′ = γ (t − v x). This is a classical way of writing it; you have to choose a
coordinate system, with axes and so on. We want to use vectors, with four components, since we
think of space-time as a four-dimensional space, where time is one of the components. Saving
the µ, ν , � for other things we’ll get to later, we will use the beginning of the Greek alphabet,
α, β, γ� as indices: xα, α = 0, 1, 2, 3. (For the space part: r→ xi, i = 1, 2, 3.) α = 0 would nor-
mally be the time component, and we normally work in four-dimensional space-time.
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The Lorentz transformation is a linear transformation of the coordinates. v is not a function of
anything in this context. It is to be regarded as a parameter that relates the two inertial frames.
It is just a constant.

x′α =Λ β
α xβ =

∑

β=0

3

Λ β
α xβ; in matrix form: x′= Λ x; = ·

I remind you of a convention that we will use all the time: when one index (here β) is repeated,
once downstairs, once upstairs, summation is implied. If an index appears twice upstairs, we
have done something wrong.

It is a linear transformation, but it is not any linear transformation. If this were a general trans-
formation, we would have 16 constants, but we only have one: v.

There are several ways to do this, perhaps the easiest is to... take a break.

There are two postulates involved: Physics is independent of the coordinate system you use to
describe it, and light travels with a constant velocity (in our units, c = 1). Light moves one light-
second per second, independent of the observer.

t

x

light
x = t

More general: r = r0 + (t− t0)e, ∆r = r − r0, ∆t = t− t0. Light ray:

(∆r)2− (∆t)
2 =0

∆s2≡ (∆r)
2− (∆t)

2

∆s2 is not really a square, it is a symbol that denotes (∆r)2− (∆t)
2.

General relativity is about curved spaces, so finite distances are not trivial. We will use infinites-
imal distances — if we want something finite we can always integrate it.

Often (In this course, often will mean always): ds2 = |dr |2− dt2.

Light rays: ds2 = 0. (There is no analogy in Euclidean geometry.) We turn light to geometry.
We restrict ourselves to transformations that give ds′ 2 = ds2 =0.

(Just as a parenthesis: [“I couldn’t spell Einstein, so perhaps I can spell Euclid”] Euclidean geo-

metry: ds2 = dx2 + dy2 + dz2 = dr
T dr. OK to make orthogonal transformations, r

′= P r, PTP =

1. ds′2 = (P dr)
T
(P dr)= dr

T PTP dr = ds2).

Einstein:

dx′= Λ dx

ds2 = |dr |2− dt2 = dx2 +dy2 +dz2− dt2

ds2 =dxT η dx = ηαβ dxα dxβ , η =









− 1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
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η is the metric of Minkowski space-time (flat space-time).

ds′
2 =(Λdx)

T
η Λ dx = dxT ΛT η Λ dx

In order to get ds′
2
=ds2 in the general case, we need η = ΛT η Λ.

ηγδ Λ α
γ Λ β

δ = ηαβ

(Derive this, as a first homework, and check that the Lorentz transformations given above fulfil
this.)

4-vector vα is a collection of numbers that behaves in a certain way when you do a Lorentz
transformation. A 4-vector vα transforms as dxα:

v ′α =Λ β
α vβ , Λ β

α =
∂x′α

∂xβ
, dx′α =Λ β

α dxβ

Tensors t′
α1,� ,αn = Λ β1

α1 �L βn

αn tβ1,� ,βn.

Lowering indices: vα≡ ηαβ vβ (⇒ v2≡ ηαβ vα vβ = vα vα).

Raising is done with the inverse of η: vα =
(

η−1
)αβ

vβ = ηαβ vβ.
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