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Today we start with supersymmetry.

But first Higgs. We have an experimental limit: mh> 114GeV. At Lep, an e+e− collider

Figure 1. Higgsstrahlung. The lower process does not occur.
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Vacuum expectation value v.

m∝ v→ v+ h

mψ̄ψ→mψ̄ψ+
m

v
ψ̄ψh

This makes the e−e+h vertex vanishingly small.

Figure 2. Lep excludes masses lower than 114 GeV with 95% confidence level. The Tevatron takes a

higher
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The first process you expect is Higgsstrahlung. The second is vector boson fusion.

Figure 3. Two reactions in one graph. Either the W
± and the ν ν̄ , or the Z and e

−
e
+.

Why can we predict the masses of Z,W±, but not the Higgs?
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Nobody knows what the value of λ is. Every other mass is proportional to v, but v= µ2/λ
√

.

Hadron collider
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Figure 4. Higgsstrahlung from a top.

Figure 5. Contribution from a loop.
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This is for the production. To actually see the Higgs, we need to see it decay. The decay
depends on the mass.

Figure 6.

Supersymmetry

Naturalness problem: In the standard model the Higgs mass gets renormalised.

i

p2−mh
2

If this is the propagator of the Higgs, the Higgs mass is the pole of the propagator.

(∂µh)
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h̃= 1
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Figure 7.

〈fig7〉 ∼λ

∫

0<|p|<Λ

d4p

(2π)4
· 1

p2−mh
2 + iε

∼λΛ2

Cut-off Λ.

Figure 8. This diagram is divergent like a log. A much milder divergence.

In supersymmetry, it was realised, there are no quadratic divergences.

Figure 9. Quadratic divergences are handled in supersymmetry by a fermion loop and a scalar loop

having opposite contributions.
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Figure 10. Each sector will have its own sypersymmetric partner: The Higgs has the higgsino, the

gluons have gluinos, ...

Supersymmetry: 3 reasons:

1) mh light.

2) Helps in grand unified theory:

Figure 11. 1/α versus E.

Supersymmetry makes the forces unify at one point.

3) Dark matter.

You have to introduce R-parity. A multiplicative quantum number = + 1 on the matter, and
for the superpartners − 1. If R-parity is conserved: a) superpartners can only be produced in
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pairs, and b) the lightest one will be stable (can of course annihilate).

Figure 12.

Notation
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
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
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
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γµ is written in the Weyl matrix.
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
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
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)
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ξ, χ†: two component Weyl spinor.

PLΨ=

(

ξ

0

)

= ξ which is an abuse of notation...

PRΨ =

(

0

χ†

)

= χ†

ξα with α= 1, 2 and χ†α̇ with α̇= 1̇, 2̇.

i

4
[γµ, γν] = Jµν =4× 4 matrix

[

Li, Lj
]

= i εijkLk

M ij = εijkLk =−M ji

→ [M ij ,M lm] = (δδ− δδ)M

[Jµν , J ρτ] = (ηη� )J

{γµ, γν}= 2ηµν

Jµν =
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)
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Dirac mass
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†
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χαξα + ξα̇
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)

Figure 13.

9



Wess–Bagger is the bible of supersymmetry notation.

=m
(

χξ+ ξ†χ†
)

How to raise and lower indices? V µ, W µ: ηµνV
µW ν. Short hand: Wµ = ηµνW

ν, so V · W =
V µWµ. I am allowed to do this because there is an object η that is invariant under Lorentz
transformations. The existence of an invariant tensor is required to make a scalar of two vectors.

Is there an invariant tensor for the Weyl representation? Yes.

You usually think of a Lorentz transformation as a matrix Λµ
ν . This is not the Lorentz trans-

formation. It is the rule for transforming vectors.

Tµν→Λρ
µ Λλ

νTρλ

Define a multi-index I = 1,� , 16 corresponding to combinations of (µ, ν) from (0, 0) to (3, 3).

TI = Λ̂J
I TJ

Λ̂4
7 =Λ Λ

φ→Λscalarφ, Λscalar =1

ξα→Λ1

2
β

α ξβ , χ†→ Λ̄1

2

χ†

∃? Λ1

2

α
γ Λ1

2

β
δ εαβ = εγδ

ε12 = ε21 =+ 1

Λ1

2
γ

α Λ1

2
δ

β
εγδ = εαβ

Vµ = ηµνV
ν

ξα = εαβξβ

εαβ ξ
αχβ = ξαχα

χα2def εαβχ
β
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