2009-04—-22 Lecturer: Gabriele Ferretti
Project: Thursday 28 May 9-17 and Friday 29 May 9-12. Password for course evaluation:
“susyQ”.

Today we start with supersymmetry.

But first Higgs. We have an experimental limit: my;, > 114 GeV. At Lep, an eTe™ collider

Figure 1. Higgsstrahlung. The lower process does not occur.



Vacuum expectation value v.
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This makes the e“eTh vertex vanishingly small.

Figure 2. Lep excludes masses lower than 114 GeV with 95% confidence level. The Tevatron takes a
higher



The first process you expect is Higgsstrahlung. The second is vector boson fusion.

Figure 3. Two reactions in one graph. Either the W= and the v, or the Z and e~e™.

Why can we predict the masses of Z, W=, but not the Higgs?
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Nobody knows what the value of ) is. Every other mass is proportional to v, but v=/u?/\.

Hadron collider



Figure 5. Contribution from a loop.



This is for the production. To actually see the Higgs, we need to see it decay. The decay
depends on the mass.

Figure 6.

Supersymmetry

Naturalness problem: In the standard model the Higgs mass gets renormalised.
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If this is the propagator of the Higgs, the Higgs mass is the pole of the propagator.
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Figure 7.
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Figure 8. This diagram is divergent like a log. A much milder divergence.

In supersymmetry, it was realised, there are no quadratic divergences.

Figure 9. Quadratic divergences are handled in supersymmetry by a fermion loop and a scalar loop
having opposite contributions.



Figure 10. Each sector will have its own sypersymmetric partner: The Higgs has the higgsino, the
gluons have gluinos, ...

Supersymmetry: 3 reasons:
1) myp, light.

2) Helps in grand unified theory:

Figure 11. 1/« versus E.

Supersymmetry makes the forces unify at one point.
3) Dark matter.

You have to introduce R-parity. A multiplicative quantum number = + 1 on the matter, and
for the superpartners — 1. If R-parity is conserved: a) superpartners can only be produced in



pairs, and b) the lightest one will be stable (can of course annihilate).
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Figure 12.
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~* is written in the Weyl matrix.
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¢, xT: two component Weyl spinor.
Py = < § > =¢ which is an abuse of notation...
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£, with a=1,2 and x'* with a =1, 2.
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Figure 13.



Wess—Bagger is the bible of supersymmetry notation.
=m(xé+ETxT)
How to raise and lower indices? V#, W#: 5, V*W?". Short hand: W, = n,W", so V - W =

VH#W,. 1 am allowed to do this because there is an object 7 that is invariant under Lorentz
transformations. The existence of an invariant tensor is required to make a scalar of two vectors.

Is there an invariant tensor for the Weyl representation? Yes.

You usually think of a Lorentz transformation as a matrix A#, . This is not the Lorentz trans-
formation. It is the rule for transforming vectors.
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