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Freeze-out and dark matter

What happens when a particle species goes out of equilibrium? Let’s consider a case of great
interest to the dark matter problem. Assume there exists a particle χ with an antiparticle χ̄

such that they can annihilate or be pair-created according to χ + χ̄ ↔ Y + Ȳ , where Y , Ȳ can be
quarks, leptons... and are assumed bo be in thermal equilibrium with the photons and other
light particles in the early universe.

The equation which governs the departure of the number density nχ ( = nχ̄) of ξ from equilib-
rium is
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(“Boltzmann equation” from non-equilibrium thermodynamics.) σannihilation is the toootal anni-
hilation cross section of χ + χ̄ → stuff. 〈� 〉 denotes a thermal average and v is the velocity. nχ
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is the equilibrium density. Using
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and changing variables to x = mχ/T and Yχ = nχ/s, where s is the entropy density, one can
show
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This equation can be solved numerically with boundary condition Y ≃ Y Eq at small x (since at
high T the χ’s were in thermal equilibrium with the other particles.) Note that Γ/H enters into
the equation and determines the evolution.

A special case is if the species χ was relativistic at freeze out when Yχ(∞) = Yχ
Eq(xf) = [xf =

mχ/Tf] =

=
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2π4
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where geff = g for bosons, and geff =
3

4
g for fermions. Such a particle is called a hot relic. The

present mass density of a hot relic can be show to be Ωχ h2 = 7.8× 10−2 ge ff

ge ff
s (xf)

( mχ
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)

.

Example: For a neutrino one has geff =2× 3

4
=

3

2
and geff

s = 10.75.

10.75 = 2 +
7

8
( 2× 2 + 2× 2 + 2 )

γ e− e+ ν

Demanding that Ωνν̄ h2 < 1 one finds:

∑

i=1

3

mνi
< (90 eV)ΩM h2

Thus there is a bound on the neutrino masses coming from cosmology!

One dark matter candidate is the so called neutralino (a particle in supersymmetric models). It
is electrically neutral and does not emit or absorb radiation. A mass arund 30 GeV — few TeV
could give a realistic contribution to ΩM.
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Another dark matter candidate is te so called axion, a light boson. A mass of 10−6− 10−3 could
give a sizable contribution to ΩM.

Inflation

As we have discussed the hot big bang model is very successful. It can be used to describe the
universe from at least t = 10−2 s until today t = 14 Gyr. There are essentially no observational
data which are in conflict with the standard model of cosmology. Nevertheless, there are some
problematic aspects of the model which have to do with initial conditions.

The horizon problem (homogeneity, isotropy problem)

Why is the universe we observe today so homogeneous and isotropic?

Recall that regions in causal contact are bounded by horizons. Let’s compare the size of a
horizon ∼ 1/H witht he scale factor a. We have

a
1

H

= ȧ

From the Friedmann equations we know

ä

a
=− 4πG

3
(ρ +3p)

Under normal circumstances, ρ > 0, p > 0, which implies ä < 0. This means that ȧ decreases with
time, which in turn means that the horizon size grows faster than the scale factor. If two points
are outside the horizon today they have always been outside the horizon.

If we look at diametrically opposite points on the sky we are looking at points which have not
yet come into causal contact (the CMBR just reached us, and we are in the middle). Yet the
temperatures of the two regions are equal to a very high accuracy. How did regions which were
never in causal contact turn out to have the same temperature? This is the horizon problem.

One can solve it by imposing suitable initial conditions. However, if one looks closer at the
problem one comes to the conclusion that at the Planck time one must require that the universe
to be homogeneous over ∼ 1083 causally disconnected regions. This is very unnatural.

The flatness problem

From the Friedmann equations we know

Ω =
ρ

ρcrit
= 1+

k

ȧ2
=

1
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where

x=
3k

8πGρ a2

x∼
{

a2 for radiation
a for matter

Above we argued that ȧ decreases with time. This means that Ω deviates more and more from
1. Now, if Ω has been deviating more and more from 1 for 10 billion years or so, why is it still
so close to 1? For example, one can argue

|Ω(tPl)− 1|. 10−60

is required to get the value of Ω we observe today.

The monopole problem

AS we discussed briefly before monopoles are possible solutions in (extensions of) the standard
model of particle physics. These are heavy particles, which feel an urge to dominate the uni-
verse. There is no way to suppress such particles if they were produced in the early universe.
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