
2009–02–04 Lecturer: Niclas Wyllard

Last time: the particles in the standard model.

Spin 1: γ, W±, Z , gluons. Spin
1

2
: e, νe, µ, νµ, τ , ντ , u, d, s, c, t, b + antiparticles. Spin 0: Higgs?

Feynman diagrams

So far we have not talked much about interactions and quantum corrections. There is a very

useful method for computing quantum corrections, using so called Feynman diagrams. The rules
for constructing these diagrams can be read off directly from the Lagrangian.

Let’s start with something simple. Consider the “partition function”:
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This is divergent. But we don’t care about that. We do a formal power series:
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These integrals are convergent.
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d

dJ
need to come “in pairs”, since otherwise factors of J will appear that are killed by

∣
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∣
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.

Represent the expansion graphically:

Figure 1. Propagators and vertices.

Note that these can be related to the “Lagrangian” L = − m2

2
ϕ2 + λ ϕ4: The propagator is the

inverse of the “operator” x in − 1

2
ϕ x ϕ. The vertex follows from the λϕ4 term. The 4 in the λϕ4

tells us that there are four lines going out from/into the vertex.

Figure 2. One vertex, two propagators.
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This is faster than doing the derivatives, but gives the same thing. The next thing would be two
vertices — then we would need four propagators. (That’s 105 possibilities. 7× 5 × 3 = 105.) You
are not supposed to have any free ends sticking out. We get

105

2!

λ2

(m2)4

The 2! is due to the equivalence of the two vertices.

Some diagrams are disconnected, e.g. 8∞〈fig〉, others are connected, e.g. 〈fig〉.

Figure 3.

Consider
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W is an expansion in connected diagrams. Check: for two vertices there are 3 × 3 disconnected
diagrams. W is an expansion in the number of loops:

− 1

2
lnm2: 1-loop term

3
λ

m4
: 2-loop term

96

2

λ2

m8
: 3-loop term

So far we have only calculated “vacuum diagrams”, i.e. diagrams with no external legs. Dia-
grams with external legs are also of interest: they correspond to “scattering” diagrams.
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Figure 4. Two things come in, something happens in the middle, two things go out. These “things” will

eventually be found to be particles.

Figure 5. Expansion of “something happens in the middle”.

Such diagrams arise from

〈ϕn〉=
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.

(We are not quite following the book. But you will need to read the book as well, in order to
solve the hand-in problems.)

In quantum field theory one has a similar structure. For a spin 0 scalar field one has

ϕ→ φ(x)

− m2

2
ϕ2 + λϕ4→

∫

d4x

(

1

2
∂µφ∂µφ− m2

2
φ2 + λφ4

)

∫

dϕ→
∫

Dφ(x): this is a path integral.

Note
∫

d4x ∂µφ ∂µφ=−
∫

d4x φ ∂µ∂µφ.

The propagator is the inverse of x in − 1

2
φxφ, i.e. the inverse of ∂µ∂µ + m2. In momentum

space (Fourier transform), ∂µ is just pµ (ignoring factors of i), so the inverse is 1/(p2 + m2),

where p2 ≡ pµpµ. The vertex is λ as before. There are also some δ-functions which impose
momentum conservation. For low energies (pµpµ small compared to m2) the propagator is
simply 1/m2.

The propagator for the vector (spin 1) fields is a bit complicated because of the vector index on

Aµ, Wµ
±, Zµ, � However, for the massive particles (W±, Z) at low energies the propagator is

simply ηµν/m2:
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Figure 6. The propagator ηµν/m2.

The propagator for the fermions (spin
1

2
) is also a bit complicated (it involves γµ etc).

Examples of interactions (vertices) in the standard model:

Figure 7. W−

→ e−+ ν̄e and µ−

→ νµ + W−.
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Combining leads to muon decay:

Figure 8. Muon decay: µ−

→ e−+ ν̄e + νµ

Figure 9. Down-quark decay. d→ u + W−. (Such decays lead to β decay: n→ p + e−+ ν̄e.)
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Figure 10. β-decay. n→ p + e− + ν̄e. (Here the quarks look like free particles, which they are not, so it

is a bit simplified.)

Figure 11. Electron-positron annihilation.

Beyond the standard model

Despite all its successes (the best tested theory we have ever constructed), the standard model is
incomplete. It does not include gravity. There should be some kind of quantum gravity. That’s
one motivation, but it is not the only one.

One extension which has some appealing features is supersymmetry. This model predicts a
sypersymmetric partner to all particles in the standard model. So far, none of these have been
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observed in experiments.
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