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• Relativistic matter/energy (radiation) p= ρ/3, ρ∝ a−4.

• Nonrelativistic matter (dust) p = 0, ρ∝ a−3.

For small t, a(t)∼ tα is sometimes useful.

• Vacuum energy: p =− ρ, ρ = constant.

Toy models for FRW spacetime

To get some feeling for the form of the FRW metric one can consider lower-dimensional
examples. The two-dimensional sphere S2 is defined via x2 + y2 + z2 = a2 in R

3. This implies

dz =
− xdx− y dy

z
=± xdx + y dy

a2−x2− y2
√

so that

ds2 = dx2 +dy2 +dz2 = dx2 +dy2 +
(x dx+ y dy)

2

a2−x2− y2
.

Let x = a r cos θ, y = a r sin θ which implies

ds2 = a2

(

dr2

1− r2
+ r2 dθ2

)

Similarly, starting from a hyperboloid embedded in R
3: [I think you are wrong here. I believe in

embedding in a Minkowski space, rather than an Euclidean space.]

x2 + y2− z2 = a2

one can show that the metric (on the Lobachevski plane) can be written:

ds2 = a2

(

dr2

1 + r2
+ r2 dθ2

)

Note also that the two-dimensional plane R
2 has a metric of the above form,

ds2 = a2

(

dr2

1− k r2
+ r2 dθ2

)

with k = 0.
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〈fig〉

The expansion and Hubble’s law

We know from observations that galaxies move away from each other, so we have at the present
time H(t0)≡ ȧ/a > 0.

Comment: Since the universe is homogeneous and isotropic the expansion looks the same for all
observers. There is a preferred frame (the so-called comoving frame, or cosmic rest frame) in
which the microwave background radiation is maximally isotropic.

A two-dimensional toy model

Consider a universe whose spatial part is the surface of a sphere with a radius a(t) r. A “galaxy”
in this universe (with θ, r = constant) has a velocity

vAB =
d

dt
dAB(t)=

d

dt
a(t) r θAB

〈fig〉 A and B are two points on the sphere.

vAB =
ȧ(t)

a(t)
dAB(t)

Thus v = H(t) d with H(t) = ȧ(t)/a(t).

Deceleration parameter q(t) = − ä/a H2. In terms of H and q the Friedmann equations can be
written

1+
k2

a2H2
= ρ/ρc≡Ω

(

ρc =
3H2

8πG

)

q =
1

2
(ρ + 3p)/ρc

Note that a(t)= a(t0)
(

1 + H(t0) (t− t0)− 1

2
q(t0)H(t0)

2(t− t0)
2 +� )

.

The fate of the universe

Since the scale factor a(t) determines whether the universe is expanding or contracting (or just
static), it is of interest to investigate what happens as t→∞.

The continuing redshift of the cosmic microwave background radiation means that radiation can
be neglected as t→∞.. Thus only ρm and ρΛ play a role. Recall,

ȧ(t)2 =
8πGρ0a0

3

3 a(t)
− k +Λ

a(t)2

3

Some examples:

If Λ = 0 and k = − 1, 0, then the universe will expand forever. If k = + 1 the ȧ(t) will be zero

when a(t) = acrit = 8πG ρ0a0
3/3. Since ä(t) = − (ȧ/a)

2
a − 1/a2 · a < 0, the universe will start to

contract after reaching a = acrit. 〈fig〉

If Λ � 0 one sees that for small a(t) its effect is negligible, but for large a(t) its effect will dom-
inate. If Λ < 0, then ȧ will again be 0 for some t and since ä < 0 (now independent of k) the uni-
verse will again start to contract (might even oscillate).

If Λ > 0, and k = 0 or k = − 1, then we will have exponential expansion. If k = + 1, the case is
more subtle. As an example, there is a static solution. This was the reason why Einstein intro-
duced the cosmological constant, since he wanted the universe to be static.
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Horizon distance

The horizon distance is the distance light can travel from the beginning to a particular time t0.
Since for light ds= 0 we get for radial motion (θ, ϕ = const)

dt =
a(t)

1− k r2
√ dr

which implies
∫

0

t0 dt

a(t)
=

∫

0

rE dr

1− k r2
√

Thus, the largest physical distance dH we can observe today is (the horizon distance) given by

dH(t0) = a(t0)

∫

0

rE dr

1− k r2
√ = a(t0)

∫

0

t0 dt

a(t)
= a(t0)

∫

η(0)

η(t0)

dη

(Note that dH(t0) is simply
∫

0

rE grr
√

dr.)

dH sets a limit for what part of the universe is in causal contact.

Redshift

Since the universe is expanding, all lengths are stretched out. In particular this applies to the
wave lengths of light. Consider two successive wave crests emitted at tE and tE + δtE and
observed at t0 and t0 + δt0. We have

∫

tE

t0 dt

a(t)
=

∫

tE+δtE

t0+δt0 dt

a(t)
⇔

∫

t0

t0+δt0 dt

a(t)
=

∫

tE

tE+δtE dt

a(t)

For δt≪ t and using λ= δt we get

λ0

λE
=

a(t0)

a(tE)
.

It is very common to define the redshift z via

1 + z≡ λ0

λE
=

a(t0)

a(tE)

Luminosity distance

How does a distant light source look in observations here on earth, and how can it be used to
determine the cosmological parameters?

There is no method that we can use to directly obtain distances to cosmological objects.
However, if we know the absolute luminosity L (energy/time) of an object (such an object is
called a standard candle), then we can define its luminosity distance my measuring the flux F

(energy per time and area), via

dL
2 =

L

4πF
.

If there was no expansion, then a telescope with area A would intercept a fraction

A

4π(a(tE) r)2
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of the emitted photons. But because of the expansion only a fraction

A

4π(a(t0)r)
2

are observed.

The flux has additional factors of 1 + z, since photons are redshifted by 1+ z =
a(t0)

a(tE)
.

Furthermore, the time interval between photon emissions will also be increased by a redshift
factor 1+ z.

F =
L

4πa2(t0) r2 (1+ z)2
≡ L

4π dL
2

Eliminating the parameter r one finds

dL =
1

H0

(

z +
1

2
(1− q0)z

2 +� )

Angular distance

Another measurement of distance is the angular distance dA:

dA =
D

δθ

where D = proper size of the object, assumed to be known (standard ruler). δθ is the angular
size of the object.

D = a(tE) r δθ⇒ dA = a(tE)r =
a(t0)

1+ z
r

Thus

dA =
dL

(1+ z)2
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