
2009–01–21 Lecturer: Niclas Wyllard

Rudiments of general relativity

The fundamental object in Einstein’s theory of gravitation is the metric tensor. The distance
between two (spacetime) points with infinitesimal separation is:

ds2 = gµν(x) dxµ dxν2def ∑

µ,ν=0

3

gµν(x) dxµ dxν

The index µ runs over four values, three space indices and one time index.

Examples:

•R2:

ds2 = dx2 + dy2, or in polar coordinates: ds2 = dr2 + r2 dθ2

•S2 (the two-dimensional [surface of a] sphere).

ds2 = R2
(

dθ2 + sin2θ dϕ2
)

• 4-dimensional Minkowski space:

ds2 = dt2− dx2− dy2− dz2≡ ηµν dxµ dxν

(Note the choice of sign convention, which differs from that used in the course “Gravitation and
Cosmology”.)

When is space flat/curved?

Can be determined from the Riemann tensor Rµ
νρσ :

Rµ
νρσ (x)≡ 0 ⇔ space(time) is flat

Rµ
νρσ = ∂ρΓνσ

µ − ∂σΓνρ
µ +Γλρ

µ Γνσ
λ −Γλσ

µ Γνρ
λ

where

Γσδ
µ =

gµλ

2
(∂σgλδ + ∂δ gλσ − ∂λgδσ)

where gµνgνσ = δσ
µ (the gµν is the components of the matrix inverse of the matrix with compon-

ents gνσ).

Einstein’s equations

Define Rµνρσ = gµλR
λ

νρσ and Rµν = gρσRρµσν. The Ricci tensor is symmetric in its indices:
Rµν = Rνµ. Also define R = gµνRµν. Using these objects, Einstein’s equations read

Rµν −
1

2
gµνR = 8πGTµν

where Tµν is the energy-momentum tensor, which acts as a source term. These partial differen-
tial equations (10 of them) determine the metric of spacetime.

Standard model of cosmology (FRW model)
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The universe is assumed to be homogeneous and isotropic. Homogeneous means that (for a
given time) physics is the same at every point. Isotropy means that the physics is the same in
every direction from a given point. Homogeneity does not necessarily imply isotropy. However,
isotropy at every point implies homogeneity.

One can show that homogeneity and isotropy implies the line element (the metric) can be
written

ds2 = gµν dxµ dxν = dt− a2(t)

(

dr2

1− k r2
+ r2dθ2 + r2 sin2θ dϕ2

)

where k ∈{− 1, 0, + 1}.

It is assumed that the “energy” / matter of the universe is a “perfect fluid” described by its
energy density ρ, its pressure p and its four-velocity, uµ. The energy momentum tensor is

Tµν =(p + ρ)uµuν − p ηµν

In general there is an equation of state: p = p(ρ). With the above assumptions, Einstein’s equa-

tions Rµν −
1

2
gµν R = 8πG Tµν then leads to



















(

ȧ

a

)2

+
k

a2
=

8πG

3
ρ

2ä

a
+

(

ȧ

a

)2

+
k

a2
=− 8πG p

, ˙≡
d

dt
(1)

Conservation of energy-momentum, DµT µν =0 gives

d

dt

(

ρa3
)

=− p
d

dt

(

a3
)

which also follows from the equations (1), and it has a simple interpretation since a3 can be
thought of as a volume, a3 ∼ V , and similarly ρV ∼ E, the total energy. Now the above simply
says dE =− p dV .

Some examples:

• Ultra-relativistic gas (e.g. photons, radiation): p = ρ/3.

2ä

a
+ 2

(

ȧ

a

)2

+ 2
k

a2
=0

Introduce η implicitly by dη =dt/a(t):

a′(η)≡
da

dη
=

da

dt

dt

dη
= ȧ(t) a(t)

a′′=
d2a

dη2
=

d

dη
(a ȧ)=

d

dt
(a ȧ) a = ä a2 + ȧ2 a

a′′+ k a =0 ⇒ a(η)= C ·







sinh(η), k =− 1
η, k =0
sin(η), k =+ 1

t = t(η) can be found from dt/dη = a(η).
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Also, ρ̇ a3 + 3ρ ȧ a2 + ρ a2ȧ =0

⇒
ρ̇

ρ
+ 4

ȧ

a
= 0 ⇒ ρ∝ a−4

• Nonrelativistic matter (e.g. non-relativistic neutrons, protons, etc.). p = 0.

a′′+ k a =
4πG

3
ρ a3

and

ρ̇

ρ
+

3ȧ

a
⇒ ρ∝ a−3

a(η)= C ·







cosh η − 1, k =− 1

η2, k =0
1− cos η, k =+ 1

• Vacuum energy (e.g. cosmological constant). p =− ρ. ρ̇ = 0, i.e.

ρ = const≡
Λ

8πG

(8πGTµν = Λ gµν)

2
ä

a
=8πG

(

−
ρ

3
− p

)

=
2

3
Λ

⇔ ä −
Λ

3
a =0

a(t) =
3

Λ

√
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sinh

(

Λ

3

√

t

)

, k =− 1

exp

(

Λ

3

√

t

)

, k = 0

cosh

(

Λ

3

√

t

)

, k = +1

Newtonian (non-relativistic) analysis

Consider an infinite, expanding homogeneous and isotropic universe filled with “dust”, i.e.
matter whose pressure p is negligible compared to its (energy) density ρ.

Consider an arbitrary sphere with radius R. Because of the expansion

R(t)=
a(t)

a0
R0

Assumption: The effect of the matter outside of the sphere on a particle inside the sphere is
zero. (Birkhoff’s theorem in GR [What?! Looking up Birkhoff’s theorem, I see no connection.]).

Total mass inside the sphere is conserved, i.e.

d

dt
M = 0.

3



Since

M = ρ(t)
4π

3
R3(t) = ρ(t)

(

a(t)

a0

)3

·
4πR0

3

3

we get

ρ̇ =−
3ȧ

a
ρ

Equation of motion for a particle on the surface of the sphere:

m R̈(t)=−
Gm M

R2

Using R(t)=
a(t)

a0

R0 we get

ä =−
4πG

3
ρ a.

Agrees with previous expressions! (when p = 0). Reason: the sphere can be made arbitrarily
small.
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