2008-12—-09 Lecturer: Bernhard Mehlig

WKB quantisation

7{ dz p(zx) :27rh<n+%), n=0,1,2,...

This is the quantisation condition that determines the energy levels. The energy hides in p(z) =

V2m (E —V(z)). The curve is a closed trajectory in phase space. The energy also comes in
when we choose initial conditions in phase space.

For the Harmonic oscillator
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We have to add 7/2 when crossing a turning point. In general: 7, where v is the Maslov index.

1 [ dzdp B _J 1 ifz>0,
nfﬁy{d:cpf/ 5Ty 0(E — H(x,p)) WhereG(z){ 0 ifz<0.

The area in phase space is 27hn.

This has all been in one dimension, so far. How to do this in several dimensions?



Figure 1. One degree of freedom. The phase-space is two-dimensional.

Figure 2. Two degrees of freedom. The phase space is four-dimensional. The trajectory (red) lies on a
torus.



H(,I). H does not depend on §. Hamilton’s equations.

. OH - OH
I__W_O’ H_W—constant

OH

9_00+Wt

z,p—0,I—solve—x,p

Canonical transformation to action, angle coordinates. Problem: this will only work if such tori
exists.

I; :]{ de-p=27h(n;+v;), j=1,...,number of degrees of freedom
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Scattering

Figure 3. Scattering of a plane wave by a potential V(r) into spherical waves fi (0, @) e® " /r.



Figure 4. b is the impact parameter.
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Rutherford: oot = 00.

Hard sphere with radius a: oyo; = a2
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This is a formula for radial symmetry. All the information about the scattering is in the scat-
tering phase shifts §;.

[§Z+k2 V(r)— ﬁ%gﬁ}mo»:o

w(r) ~ sin(kr + %T + 51) as 7 — 00, forward direction

For ka < 1, the hard sphere has oy, = 47a?. For ka>>1 (large energies), you expect to get clas-
sical. But we get ooy = 2ma’.

Fraunhofer: Optical scattering from a completely black sphere: oy, = ma?. Due to diffraction.

Eikonal approximation
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Approximate with 1 = exp(%S ), where S is the eikonal. We get the Hamilton-Jacobi equation
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Next: approximate the path as a straight line.

Figure 5.
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The integration constant is chosen so that S/h— kz as V — 0. If we have no potential, we want
the plane wave to just go through.



The next approximation is |Vp| < E. Expand:
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Figure 6. Yukawa: V(r) = — 2 e~ "/% Vy=250,a=1,k=5m=

> h=1. The approximation is very
accurate for small 6.
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Figure 7.

We get rid of the X — 1 factor if L > A.
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The Fraunhofer result has 2 sing instead of 6. But for small angles, we can say that this is the
famous Fraunhofer diffraction from a black sphere.
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