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WKB quantisation

∮
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This is the quantisation condition that determines the energy levels. The energy hides in p(x) =

2m (E −V (x))
√

. The curve is a closed trajectory in phase space. The energy also comes in

when we choose initial conditions in phase space.
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We have to add π/2 when crossing a turning point. In general: πν, where ν is the Maslov index.

n=
1

2π~

∮

dx p=

∫

dx dp

2π~
θ(E −H(x, p)) where θ(z)=

{

1 if z > 0,
0 if z < 0.

The area in phase space is 2π~n.

This has all been in one dimension, so far. How to do this in several dimensions?
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Figure 1. One degree of freedom. The phase-space is two-dimensional.

Figure 2. Two degrees of freedom. The phase space is four-dimensional. The trajectory (red) lies on a

torus.

Ij =

∮

Cj

dx · p
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H(θ, I). H does not depend on θ. Hamilton’s equations.

İ =− ∂H

∂θ
= 0, θ̇ =

∂H

∂I
= constant

θ= θ0 +
∂H

∂I
t

x, p→ θ, I→ solve→x, p

Canonical transformation to action, angle coordinates. Problem: this will only work if such tori
exists.

Ij =

∮

Cj

dx · p = 2π ~ (nj + νj), j= 1,� , number of degrees of freedom

Scattering

Figure 3. Scattering of a plane wave by a potential V (r) into spherical waves fk(θ, ϕ) eik
′
·r/r.
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Figure 4. b is the impact parameter.
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σtot =

∫

dΩ
dσ

dΩ

Rutherford: σtot =∞.

Hard sphere with radius a: σtot = πa2.

dσ

dΩ
= |fk(θ, ϕ)|2

fk(θ, ϕ) =
1

k

∑

l=0

(2l+ 1) eiδl sin δlPl(cos θ)
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This is a formula for radial symmetry. All the information about the scattering is in the scat-
tering phase shifts δl.

[

∂2

∂r2
+ k2−V (r)− l (l+ 1)

r2

]

ul(r)= 0

ul(r)∼ sin

(

k r+
lπ

2
+ δl

)

as r→∞, forward direction

For k a≪ 1, the hard sphere has σtot = 4πa2. For k a≫ 1 (large energies), you expect to get clas-
sical. But we get σtot = 2πa2.

Fraunhofer: Optical scattering from a completely black sphere: σtot = πa2. Due to diffraction.

Eikonal approximation

ψk

+ =eik·r + fk(θ, ϕ)
eik·r

r

Approximate with ψk
+ = exp

(

i

~
S

)

, where S is the eikonal. We get the Hamilton-Jacobi equation

(∇S)
2

2m
+V =E
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r
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′ · p

Next: approximate the path as a straight line.

Figure 5.
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The integration constant is chosen so that S/~→ k z as V → 0. If we have no potential, we want
the plane wave to just go through.
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The next approximation is |V0|≪E. Expand:
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∫

db

Pl(cos θ)∼ J0(l θ)= J0(θ k b)

δl∼ χ|b=l/k

Figure 6. Yukawa: V (r) = −

V0

r
e−r/a. V0 = 250, a = 1, k = 5, m =

1

2
, ~ = 1. The approximation is very

accurate for small θ.

V (r) =

{

−V0 if r < a
0 if r > a

V0 =V0
′+ iV0

′′

χ=

{

0 if b> a
V0

4k
a2− b2

√
if b< a

|e2iχ|2 = e−4Im χ = e
−

V0
′′

4k
a2

−b2
√

= e−L/Λ, Λ =
k

V0
′′
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Figure 7.

We get rid of the e2iχ − 1 factor if L≫Λ.

f ∼ i k

∫

0

db b J0(k b θ) = i a
J1(k a θ)

θ

The Fraunhofer result has 2 sin
θ

2
instead of θ. But for small angles, we can say that this is the

famous Fraunhofer diffraction from a black sphere.

dσ

dΩ
= |f |2

σtot =π a2
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