
2008–12–05 Lecturer: Bernhard Mehlig

Free particle ψ = exp
(

± i

~
S
)

where S is a classical action, S =
∫ x

dx′ p(x′). For a particle

bound in a potential, what is the wave function? What is the quantisation condition? (Bohr,
Pauli!) Einstein noticed that Bohr’s method would fail for most systems. Periodic orbits are in
general not stable.

Stationary phase approximation

I =

∫

x1

x2

dx g(x) e
i

~
f(x)

~ → 0: the integrand oscillates rapidly. The main contribution to I is from the vicinity of xj
∗

where f ′(xj
∗) = 0. Assume that xj

∗ is sufficiently far from the boundary (x1 and x2). Also assume

that the xj
∗ are sufficiently far from each other.

f(x)= f(xj
∗)+

1

2
f ′′(xj

∗) (x− xj
∗)2 +�

Change of variables: x→ t, so that

1

2
fj
′′ · (x− xj

∗)2 = sj t
2 where sj = sgn(fj

′′);
dx

dt
=

2

|fj
′′|

√

I =
∑

j

g(xj
∗) e

i

~
f(xj

∗)
∫

−∞

∞

dt
dx

dt
exp

(

i

~
sj t

2

)

This is a Fresnel integral.

∫

−∞

∞

dt e±it2 =

∫

−∞

∞

dt
[

cos t2± i sin t2
]

= π
√ (1± i)

2
√ = π

√
e±iπ/4

I =
∑

j

g(xj
∗) e

i

~
f(xj

∗) 2
√

|fj
′′|

√ · π
√

exp

(

iπ

4
sgn fj

′′

)

I =

∫

x1

x2

dx g(x) e
i

~
f(x)≈

∑

j

g(xj
∗)

2π

|f ′′(xj
∗)|

√

exp

(

i

~
f(xj

∗)+
iπ

4
sgn f ′′(xj

∗)

)

1



where xj
∗ is such that f ′(xj

∗) =0.

WKB wave function with p(x)=± 2m (E −V (x))
√

.

Figure 1. The blue curve is the exact solution to the Schrödinger equation with the linearised poten-

tial. The red and green parts are the WKB approximations.
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In the allowed region, the red part of figure 1:

A+

p(x)
√ exp

(

i

~

∫

x0

x

dx′ p(x)

)

+
A−

p(x)
√ exp

(

− i

~

∫

x0

x

dx′ p(x′)

)

The green part:

B

|p(x)|
√ exp

(

− i

~

∫

x0

x

dx′ p(x′)

)

The linear approximation to the actual potential:

V (x)≈E −F · (x− a)

⇒ p(x)=± 2mF · (x− a)
√

The exact wave function for the linear potential, the blue part of figure 1:

ψ(x)=C

∫

−∞

∞

dp exp

(

− i

~

(

p3

6mF
− p(x− a)

))

This is a situation where we can use the stationary phase approximation:

− f(p)=
p3

6mF
− p(x− a)

The ψ(x) above is actually closely related to the Airy function:

Ai(x)=

∫

−∞

∞ du

2π
exp
(

i
(

u3 + xu
))

.

There is one combination that occurs frequently in the final result:

∫

a

x

dx′ p(x′)=
2

3
2mF

√
(x− a)

3/2

E >V (x):

ψ(x)=
A

p(x)
√

[

exp

(

i

~

∫

a

x

dx′ p(x′)− iπ

4

)

+ exp

(

− i

~

∫

a

x

dx p(x′)+
iπ

4

)]

E <V (x):

ψ(x)=
B

|p(x)|
√ exp

(

− 1

~

∫

x

a

dx′ |p(x′)|
)

3



Studying E > V (x) we find that we should choose |A−| = |A+|, but give A− and A+ different
phases.

Figure 2. Next, we have to match the wave functions in the middle.

ψleft(x)=
C

p(x)
√ sin

(

1

~

∫

a

x

dx′ p(x′) +
π

4

)

ψright(x) =
C ′

p(x)
√ sin

(

1

~

∫

x

b

dx′ p(x′)+
π

4

)

ψright(x)=
C ′

p(x)
√ sin

(

1

~

∫

a

b

dx′ p(x′)− 1

~

∫

a

x

dx′ p(x′)+
π

4

)

=

=
−C ′

p(x)
√ sin

(

1

~

∫

a

x

dx′ p(x′)− π

4
− 1

~

∫

a

b

dx′ p(x′)

)2! C

p(x)
√ sin

(

1

~

∫

a

x

dx′ p(x′)+
π

4

)

− 1

~

∫

a

b

dx′ p(x′)− π

4
+π+n ·π=

π

4
, n∈Z
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Maupertuis action.

p(x)= 2π(E −V (x))
√

1

~

∫

a

b

dx′ p(x′)=

(

n+
1

2

)

π

C ′

C
= (− 1)

n

2

∫

a

b

dx′ p(x′) =

(

n+
1

2

)

2π~

Figure 3. 2
∫

a

b
=
∮

∮

dx′ p(x′)=

(

n+
1

2

)

2π~
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Figure 4. A plot in phase space.

iπν. ν =
1

2
. Maslov index. The fraction of π you pick up when passing a turning point is the

Maslov index.

Turning points. Caustics.

Figure 5. Particle trajectories. x versus t.
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Figure 6. v(x) folds over.
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